
iii

TABLE OF CONTENTS

PAGE

ABSTRACT... 1

INTRODUCTION ... 1

ACKNOWLEDGMENTS ... 3

OBTAINING AND INSTALLING THE PROGRAM ... 4
DISTRIBUTION.. 4
FILES COMPRISING THE GRID GENERATOR PROGRAM.......................... 6
PROGRAM FLOW ILLUSTRATED BY A CALL TREE................................... 17

INPUT .. 25
THE FIRST TWO LINES.. 25
FILE10 -- CONTROL SCALARS FOR NEW START .. 26

The "run-comment" lines ... 27
The "number-of-blocks" line.. 27
The "iterations" lines .. 28
The "filename-11" line ... 32
The "filename-14" line ... 32
The "write-for-restart" line... 34
The "omegpqr" line .. 35
The "quality-check" line .. 35
The "block-comment" line ... 36
The "dimension" line.. 37
The "handedness" line .. 37
The "polar-axis" line .. 39
The "freezeblock" line.. 40
The "face" line.. 40
The "norm/sect" line .. 44
The first type of "edges" line ... 44
The second type of "edges" line ... 45
The "read-in-fixed" line ... 47
The "plane-normal-to" lines ... 48
The "cylinder-about" lines ... 50
The "ellipsoid" line .. 52
The "collapsed-to-an-axis" lines .. 55
The "collapsed-to-a-point" lines .. 56
The "match-to-face" lines .. 57
The "freeze-at-restart" line ... 59

FILE11 – BODY DEFINITION ARRAYS ... 60
FILE12 – CELL HEIGHTS AND ANGLES AT BOUNDARY SURFACES 61
FILE13 – TO READ IN A GRID AND SMOOTH IT... 63
FILE16 – CONTROL SCALARS FOR RE-START .. 63
FILE18 – INDICES OF SURFACES TO BE VIEWED 65
FILE19 – CONTROL SCALARS FOR SMOOTHING A GRID 67

iv

OUTPUT .. 69

RUNNING THE GRAPHICAL USER INTERFACE .. 70

EXAMPLE CASES ... 72
THE BASIC BOX CASE .. 73
THE WING WITH FLAT PLATE EXTENSION CASE 80
THE HEMISPHERE-CYLINDER-CONE CASE... 86
FIRST VARIATION ON THE BASIC BOX CASE -- THOMAS &
 MIDDLECOFF CLUSTERING TERMS .. 94
SECOND VARIATION ON THE BASIC BOX CASE -- LOCALLY
 OPTIMUM RELAXATION PARAMETER (Ω) .. 97

INPUT FILTERS ... 100
PREGRAPE/AL PROGRAM .. 100
F10FILTER PROGRAM ... 106

THEORETICAL DEVELOPMENT.. 107
POISSON EQUATIONS IN PHYSICAL SPACE .. 107
IMPROVED STEGER & SORENSON RHS TERMS ... 110
THOMAS & MIDDLECOFF CLUSTERING TERMS .. 115
OPTIMUM RELAXATION PARAMETER... 116

POSTSCRIPT FILES... 118

v

LIST OF TABLES

PAGE

Table 1. Directories Resulting from Unpacking the tar Tape 4

Table 2. Source File Naming Convention ... 5

Table 3. 3DGRAPE/AL Program Files (Files 1 - 159).. 16

Table 4. List of Parameters .. 23

Table 5. Logical Unit Numbers Used in this Program .. 24

Table 6. The First Two Lines of Input Data .. 25

Table 7. Face Numbers and Indices ... 43

Table 8. List of Input Lines Used in File16 Input ... 65

Table 9. Color Codes ... 67

Table 10. GUI Control Buttons.. 71

Table 11. Screen Buttons in CONV HIST Mode .. 72

Table 12. Data Files for Example Cases (Files 160 - 178) 73

Table 13. PREGRAPE/AL Program and Data Files (Files 179 - 206) 101

Table 14. Description of PREGRAPE/AL input file ... 104

Table 15. Opposing Face Pairs .. 105

Table 16. F10FILTER Program and Data Files (Files 207 - 208) 107

Table 17. PostScript Files Comprising This Manual (Files 209 - 230) 119

1

ABSTRACT

This document is a users' manual for a new three-dimensional structured multiple-block
volume grid generator called 3DGRAPE/AL.1 It is a significantly improved version of
the previously-released and widely-distributed program 3DGRAPE.2,3 Many of those
improvements are taken from the grid generator program 3DMAGGS.4 It generates
volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-
hand-side terms are designed so that user-specified grid cell heights and user-specified
grid cell skewness near boundary surfaces result automatically, with little user interven-
tion. Versatility was a high priority in this code's development, and as a result it can gen-
erate grids in almost any three-dimensional physical domain.

The code is written in Fortran-77. It can be installed as an ordinary batch program, and in
that form it should run on almost any computer. Alternatively, on a Silicon Graphics Inc.
(SGI) IRIS workstation it can be installed along with its simple graphical user interface
(GUI). The GUI is also written in Fortran-77, and calls functions in the IRIS Graphics
Library (IGL). With the GUI the user can watch selected grid surfaces converging to
their final form as the elliptic solver iterates. For compiling on a CRAY supercomputer
there is a vectorized batch version.

An introduction describing the improvements over the antecedent 3DGRAPE code is pre-
sented first. Then follows a chapter on the basic grid generator program itself, and
comments on installing it. The input is then described in detail. After that is a
description of the Graphical User Interface. Five example cases are shown next, with
plots of the results. Following that is a chapter on two input filters: one which can
change input for the antecedent 3DGRAPE program into input for this program, and the
other which can prepare input data for this program from the output of GRIDGEN. Last
is a treatment of the theory embodied in the code.

INTRODUCTION

The original program, 3DGRAPE, of which 3DGRAPE/AL is an updated version, is a
batch-type program. This means that it reads in pre-defined input data, generates the
grid, and writes it out. For those boundary surfaces which are of interest ("the body") it
expects to read X,Y,Z coordinates of surface grid points which the user has pre-defined
using other software. Other boundary surfaces of less interest ("the outer boundary") can
be found by the program itself using simple analytic shapes. The grid can consist of
multiple blocks, and the program is capable of finding its own internal block-to-block

1Sorenson, R. L. and Alter, S. J., "3DGRAPE/AL: The Ames-Langley Technology Upgrade," appearing in
"Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD)
Solutions," NASA CP 3291, May 1995, pp. 447-462.
2Sorenson, R. L., "The 3DGRAPE Book: Theory, Users' Manual, Examples," NASA TM 102224, July
1989.
3Sorenson, R. L., "Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equation,"
appearing in Sengupta, S., Häuser, J., Eiseman, P.R., and Taylor, C., eds., Numerical Grid Generation in
Computational Fluid Mechanics, Pineridge Press Ltd., 1988.
4Alter, S. J., Weilmuenster, K. J., "The Three-Dimensional Multi-Block Advanced Grid Generation
System (3DMAGGS)," NASA TM 108985, May 1993.

2

boundary surfaces. Volume grid points are found by numerically solving the Poisson
equations. The Steger & Sorenson (S&S) right-hand-side (RHS) terms (or "forcing
functions") in those equations are of a type which allows the user to choose the desired
cell height on a read-in boundary, after which the program automatically finds the actual
numerical values for the RHS terms which yield the desired cell heights. In the process
the RHS terms attempt to give local near-orthogonality in the region of those same read-
in surfaces. The cell heights the user requires may be of any magnitude (limited only by
the precision of the computer), appropriate for both viscous and inviscid aerodynamic
flow modeling. The input data is ordinary text, with required formatting. The output grid
may be any of three formats, including the commonly used PLOT3D5 formats.

The new program is called 3DGRAPE/AL. "GRAPE," as used herein, is an acronym
standing for "Three-Dimensional GRids about Anything by Poisson's Equation." The
"AL" signifies that the extension and improvement was performed by the two authors of
this manual, one at NASA Ames Research Center and one at NASA Langley Research
Center. All the features described above for the original program are preserved, and a
significant suite of new features is added. Those new features are summarized below:

• Grid quality is enhanced by re-formulated control terms in the Poisson Equations.
The user may specify arbitrary angles with which lines are to intersect boundaries,
rather than that specification being limited to 90° everywhere. The treatment of
sharp corners which transverse boundary surfaces (e.g., a grid wrapping around an
airplane fuselage which has a strake) is improved using this capability.

• Another improvement to grid quality is the addition of Thomas & Middlecoff6

(T&M) clustering terms for cases where all six faces of a block are read-in. The
user can choose either the Steger & Sorenson terms (as in the original code and
improved as described above), the Thomas & Middlecoff type terms, or a blend-
ing between the two which gives good cell-size and skewness control at both the
boundaries and the interior.

• Grid quality is evaluated by computing and printing maxima, minima, medians,
and averages of cell heights and non-orthogonality, at boundaries and in the inte-
riors of the blocks of the finished grid.

• Initialization is improved by Trans-Finite Interpolation7 (for cases with six fixed
boundary surfaces). In some cases grids initialized thusly can serve as the final
grid, in others this improved initialization speeds convergence.

• Erlich's Ad Hoc Method8 for computing locally optimum relaxation parameters is
available for the code's SOR solver. This also can speed convergence.

• When installed on CRAY computers the code is vectorized in all three coordinate
directions, allowing the longest possible vector length in each block. This, also,
speeds convergence.

5Walatka, P. P., Buning, P. G., and Elson, P. A., "PLOT3D User's Manual," NASA TM 101067, July
1992.
6Thomas, P. D., Middlecoff, J, F., "Direct Control of the Grid Point Distribution in Meshes Generated by
Elliptic Equations," AIAA Journal, vol 18, pp. 652-656, June 1979.
7Soni, B. K., "Two- and Three-Dimensional Grid Generation for Internal Flow Applications of
Computational Fluid Ddynamics," AIAA 85-1526, 1985.
8Erlich, L. W., "An Ad Hoc SOR Method, " Journal of Computational Physics, vol. 44, pp. 31-45, March
1981.

3

• The grid generation iteration schedule can be divided into parts. Parameters
which effect convergence (such as relaxation rates), as well as the type of
clustering terms used and their associated decay rates, are adjustable with each
part. Intermediate solutions and restart files can be written after each part. Thus,
in practical operation, as much can sometimes be accomplished in one run with
this program as in multiple runs with other grid generators.

• An input filter called PREGRAPE/AL is supplied as a companion program. It
inputs the output from the GRIDGEN9 code, which contains blocking strategy
and surface grids, and turns that into input for 3DGRAPE/AL.

• Another input filter, called F10FILTER which reads input designed for the earlier
3DGRAPE program, and re-formats it for use in the new 3DGRAPE/AL program.

• Required cell heights and skewness at read-in surfaces can be specified by the
user at each point from a file.

• A complete grid generated elsewhere can be read-in, and the elliptic solver can be
run a few steps to smooth the grid.

• The program has much more extensive error-checking, of both input data and the
process following.

• A simple Graphical User Interface, coded in Fortran-77 and calling the IRIS
Graphics Library, allows the user to watch selected grid surfaces while the grid
solver is iterating. The user can also pause anytime during the iterative process
and plot convergence histories. A full suite of transforms and other features is
included.

ACKNOWLEDGMENTS

The authors are grateful to Professor Joe Thompson for his pioneering work in elliptic
grid generation, and for his gracious and encouraging example. Dr. Jeffrey Hultquist,
formerly of NASA Ames Research Center, provided invaluable help with the graphics;
were it not for his patience, generosity, and expertise the GUI would not have been
possible. Dr. Jin Chou of Computer Science Corp. contributed expert assistance with
vector analysis. Dr. Jamshid S. Abolhassani of Computer Sciences Corporation
provided various valuable insights and explanations. Mr. William Kleb of NASA
Langley Research Center assisted in the formulation of LARCS and other interpolation
issues. The second author gratefully acknowledges support from contract NAS1-19000.

This work is dedicated to the memory of Joseph L. Steger: scientist, mentor, teacher,
and friend.

9Steinbrenner, J. P., Chawner, J. R., and Fouts, C. L., The GRIDGEN 3D Multiple Block Grid Generation
System," Wright Research and Development Center Report WRDC TR90-33022, October 1989.

4

OBTAINING AND INSTALLING THE PROGRAM

DISTRIBUTION

It is intended that the code will be available from NASA's clearinghouse for computer
programs, the Computer Software Management and Information Center (COSMIC),
located at:

COSMIC
University of Georgia
382 East Broad Street
Athens, GA 30602

Phone: (404) 542-3265

Internet: service@cosmic.uga.edu

It is expected that the code will be distributed on a UNIX tar tape. How COSMIC will
chose to structure the files on that tape -- their order and the directory structure into which
they are put -- is unknown as of this writing. However, as the tar tape was distributed by
the authors, unpacking it caused the creation of seven directories:

Directory: Contents:
3dgdrape Program files, makefiles, and header files making up the 3DGRAPE/AL

grid generator code

box Input and output data files for the three sample data cases using the
"wavy-sided box" boundary shape

wing Input and output data files for the "wing-and-flat-plate" sample data case

hcc Input and output data files for the "hemisphere-cylinder-cone" sample
data case

pre Program files, makefiles, header files, and sample data files for the
PREGRAPE/AL input filter

f10filter Program file and sample data file for the F10FILTER input filter

ps Compressed PostScript files containing the text and figures which are
this manual

Table 1. Directories Resulting from Unpacking the tar Tape

Two hundred and thirty files are distributed among the directories. Every main program,
subroutine, function, makefile, datafile, etc., is in its own file. Those 230 files are
described in several tables appearing through out this manual. Files 1 through 159 are
files associated with the 3DGRAPE/AL grid generator code, including the GUI and
makefiles. Files 160 through 178 are files which make up the five example cases which
are used to exercise the grid generator code. Files 179 through 206 constitute the input
filter PREGRAPE/AL, including a makefile and a test case. Files number 207 and 208
are source code and a test case for the input filter F10FILTER. Files 209 through 230 are
compressed PostScript files which comprise this manual.

5

Because the program was developed on a computer having a UNIX operating system the
developer has made use of the C-Pre-Processor utility, which offers functionality similar
to that of the Update utility on earlier CDC and CRAY computers. This means, simply,
that a utility has been employed wherein parameter statements and common blocks are
stored once, in separate files called "header files," and then automatically inserted into the
code, wherever needed, by #include statements. Thus, when a dimension size or a
common block must be changed, that change is made in only one place. This reduces
both effort and errors. Users employing the code on other operating systems not having
this utility should simply insert copies of the header files wherever they are required.

Another artifice, also deriving from the UNIX operating system on which this code was
developed, is the makefiles. They constitute explicit instructions of how the code is to be
compiled and linked. There are six makefiles supplied with the code, for compiling and
linking it in UNIX operating systems running on

• single-processor SGI workstations,

• multiple-processor SGI workstations,

• CRAY supercomputers,

• SUN workstations,

• IBM workstations, and

• H-P workstations.

On SGI workstations the program can be compiled and linked either with or without the
graphics package; on the other four types of machine the supplied makefiles will compile
and link it as a batch program only, without any graphics. As of this writing it is said that
the IGL has been licensed to IBM, and so the program with its graphics package might
run on IBM machines as well as SGIs, but this has not been tested. In its batch version
the code should run on anything with a Fortran-77 compiler.

To assist the user in differentiating between the various parts and options of this software
package a naming convention has been used for the source files:

Source files having
names ending in:

Contain:

Just plain ".f" The basic batch version of 3DGRAPE/AL. They are used on all
the computers listed above. Program "main.f" is an example.

"_v.f" Versions of the solve subroutines which vectorize on the CRAY.
File "solve_v.f" is an example.

"_m.f" Versions of the solve subroutines which are optimized for use on
multiple-processor SGI workstations. File "solve_m.f" is an
example.

"_g.f" The graphics package. They are used only on SGI workstations.
File "plotit_g.f" is an example.

"_p.f" PREGRAPE/AL. Main program "pregrapeal_p.f" is an example.

Table 2. Source File Naming Convention

6

FILES COMPRISING THE GRID GENERATOR PROGRAM

The table below gives a list of the files containing the 3DGRAPE/AL code and other files
necessary to compile and link it. It gives a file number, the file name, comments on that
program unit, and a notation of how this program unit is different from its antecedent in
the earlier version of 3DGRAPE. All the files listed below will be found in the
subdirectory "3dgrape".

File
number:

File name: Purpose of, and assorted
observations on, the file:

How
changed:

1 main.f The main program. The same in all
versions.

Much
simplified

2 axbd.f Applies the collapsed-to-axis boundary
treatment by calling subroutine axsub. Does
the indexing.

3 axinit.f Initializes the X,Y,Z for points on an axis.

4 axsub.f Actually extrapolates a line to an axis.

5 banner.f Writes the 3DGRAPE/AL "banner" onto the
"printout" file.

New
subroutine,
code taken
from
subroutine
input

6 boundary.f Applies the boundary conditions in each
iteration. New boundary treatment -- freeze-
at-restart. The user might want the floating
boundaries to stop floating at restart.

New
boundary
treatment
added

7 buglist.f Collect brief notes concerning bugs found
and fixed. Set bugfix level number for
printout.

New
subroutine

8 checkco.f Consider whether the boundary treatments
specified for each face cause the corner
points to be treated not at all, once, or more
than once.

New
subroutine

9 checked.f Consider whether the boundary treatments
specified for each face cause the edges to be
treated not at all, once, or more than once.

New
subroutine

10 checkhow.f Go through each edge, recording how each
point on each edge is treated.

New
subroutine

11 checks.f Check each edge point and each corner point
to see if the boundary treatments specified
for each face cause those points to be treated
not at all, once, or more than once. This
subroutine calls checkco, checked,
checkhow.

New
subroutine

12 chkmat.f Checks the match-to-face input data for
consistency.

More robust

7

13 coarse.f Subroutine coarse cycles through the coarse
parts in the iteration schedule, and then
interpolates from coarse to fine. Batch
version.

New
subroutine,
code taken
from main
program.

14 cylbd.f Does the indexing and calls cylsub to apply
the cylinder-about boundary treatment. As
with axbd and axsub, this does the indexing
while cylsub actually does the work.

15 cylinit.f Initializes the X,Y,Z for points on a cylinder.

16 cylsub.f Actually projects a line onto a cylinder.

17 docoarse.f A little logical function which tells us
whether or not there are any coarse parts in
the iteration schedule, and if the requisite
conditions are satisfied.

New
subroutine

18 edge.f Given a function of one independent
variable, discontinuous and double valued
(e.g., the tangent at pi/2), this function finds
a working value of the function at the point
of discontinuity by extrapolating to that
point from both sides, and averaging those
two values. It is part of the generalized
angle treatment.

New
subroutine

19 elipbd.f Does the indexing and calls elipsub to apply
the ellipsoid boundary treatment. As with
axbd and axsub, this does the indexing while
elipsub actually does the work.

20 elipinit.f Initializes the X,Y,Z for points on a cylinder.
Completely re-written to initialize those
points as at the intersections of lines of
latitude and longitude on a globe. Allows
polar axis to be any of the 3 coordinate axes,
and either index to go in either direction.
Removes the awkward restriction about
being only an even-numbered face, with
read-in-fixed face opposite it.

Much
improved

21 elipsub.f Actually project a line onto the ellipsoid.
Completely re-written to have the capability
to truly project along a local normal to the
ellipsoid, whereas before we could only
project from the origin to the ellipsoid. This
solves a problem, seen in the earlier code,
wherein these boundary points were "stiff,"
i.e., they refused to move much with
iteration.

Much
improved.

8

22 fine.f Subroutine fine cycles through the fine parts
in the iteration schedule. As with subroutine
coarse, above, it comes in a batch and a
graphical version. This is the bvatch
version.

New
subroutine,
code taken
from main
program.

23 fixinit.f Reads the X,Y,Z for read-in-fixed boundary
treatments. Now has the ability to use 12-
column fields or 20- column fields in file11,
at the user's choice.

New format
available.

24 frezinit.f Initializes things for the new frozen-at-
restart boundary treatment.

New
subroutine

25 getang.f Part of the grid quality package. A function
to find the angle between two vectors.

New
subroutine

26
27
28

getdsi12.f
getdsi34.f
getdsi56.f

Record appropriate values for the cell height
and cell skewness.

New
subroutines,
code taken
from poif...
subroutines.

29 getedges.f Reads input data for sharp corners cutting
across faces.

New
subroutine,
replaces
subroutine
light

30 getmedan.f Given an un-sorted list of numbers, find the
median entry. Part of the grid quality
package.

New
subroutine

31 getsmoo.f Reads input from files 13 and 19 for the case
wherein a grid is read in and smoothed.

New
subroutine

32 getstdev.f Given a list of numbers calculate their
standard deviation. Part of the grid quality
package.

New
subroutine

33 init1d.f Applies Vinokur's two-ended stretching
algorithm to do stretched 1-D initialization
between opposing faces of the users choice.

New
subroutine,
replaces
subroutine
newinit

34 initcoms.f Initializes all the common variables, mostly
to zero.

New
subroutine

35 input10.f Reads input from file10, and calls other
subroutines which do the same. Initializes
some variables.

Formerly
called
subroutine
input.

36 input16.f Reads input from file16, in the case of a
restart, and calls other subroutines which do
the same. Initializes some variables.

New
subroutine,
code taken
from
subroutine
restart

9

37 input19.f Reads input from file19, and calls other
subroutines which do the same. This is the
case of reading in an already-generated grid
and smoothing it a little. Initializes some
variables.

New
subroutine

38 interp.f Calls subroutines interp1, interp2, and
interp3 to interpolate X,Y,Z and P,Q,R from
coarse to fine.

39
40
41

interp1.f
interp2.f
interp3.f

Interpolate X,Y,Z and P,Q,R from coarse to
fine.

42 jiggle.f Use a random number generator to move the
interior points around just a little, to prevent
blow-up on the first iteration for certain
kinds of initial conditions.

43 larcs.f Smoothes a surface. New to this
code

44 lower.f Converts all incoming text to lower case, to
make it easier to test on that text.

45 makerhs.f Note how the RHS are to be calculated, and
calculate them.

New
subroutine

46 matbd.f Applies the match-to-face boundary
treatment.

47 matinit.f Reads input and initializes points for the
match-to-face boundary treatment.

48 normst.f Reads in and processes cell height data for
specification of cell heights by stations.

49 outparts.f Output grid files and restart files after each
of the individual parts in the iteration
schedule, if appropriate.

New
subroutine

50 output.f Does the various types of output after the
grid is generated.

New
subroutine,
code taken
from main
program and
modified.

51 plabd.f Applies the plane-normal-to boundary
treatment by doing the indexing and calling
subroutine plasub.

52 plainit.f Reads input and initializes points on faces
having the plane-normal-to boundary
treatment.

More robust

53 plasub.f Actually projects a line to a plane. More robust

54 pntinit.f Reads data and initializes a face to be
collapsed to a point.

10

55
56
57

poif12.f
poif34.f
poif56.f

Calculates the terms in the Steger &
Sorenson (S&S-type) RHS terms which are
invariant with respect to computational time.

Formerly six
subroutines,
now three.
Improved by
adding
generalized
angle
control.

58
59
60

q2d12rel.f
q2d34rel.f
q2d56rel.f

Compute cell height, and angles between
lines intersecting the surface and that
surface, relative to what was locally
specified. Part of the grid quality package.

New
subroutines

61
62
63

qual2d12.f
qual2d34.f
qual2d56.f

Compute cell height, and angles between
lines intersecting the surface and that surface
in absolute terms. Part of the grid quality
package.

New
subroutines

64 quality.f The driver for the grid quality package.
Calls the other subroutines, and prints out
the answers.

New
subroutine

65 qualorth.f Computes measures of non-orthogonality at
each point in the interior of a block. Part of
the grid quality package.

New
subroutine

66
67
68

qualsrj.f
qualsrk.f
qualsrl.f

Compute stretching ratios in the indicated
coordinate directions in the interior of a
block. Part of the grid quality package.

New
subroutines

69 readangs.f Read, from file12, the angle between the line
intersecting the surface and each of the two
surface coordinate lines.

New
subroutine

70 readhi.f Read, from file12, cell heights at every point
on a face.

New
subroutine

71 restart.f Reads or writes data for restart. Major re-
write.

72
73
74

rhsf12.f
rhsf34.f
rhsf56.f

The S&S-type RHS terms are linear
functions of a second derivative near the
surface, with the constant coefficients
calculated by the poif... routines. These
subroutines calculate that derivative at the
current time step, and then re-compute the
S&S-type RHS terms.

Formerly six
subroutines,
now three.

75
76

sinhinv.f
sininv.f

Solve for x in the equations y=(sin(x))/x and
y=(sinh(x))/x, as required by Vinokur's
stretching function. As no analytic solution
is known, we must use approximations.

New to this
code, but re-
named
versions of
functions of
indeterminat
e age and
unknown
authorship.

11

77 solve.f Apply the SOR iterative scheme to the grid
generation equations and get the grid. Used
on single-processor SGI workstations, and
on SUN, IBM, and H-P workstations.

Much
modified.

78 solve_v.f Apply the SOR iterative scheme to the grid
generation equations and get the grid. Used
on CRAY and multiple-processor SGI
workstations. It doesn't actually iterate the
equations; it decides in which direction each
block should be vectorized and then calls the
subroutines immediately below.

New
subroutine

79
80
81

solvej_v.f
solvek_v.f
solvel_v.f

Actually apply the SOR iterative scheme to
the grid generation equations and get the
grid. These subroutines are vectorized in
their respective coordinate directions on the
CRAY.

New
subroutines,
but patterned
on the old
solve

82
83
84

solvej_m.f
solvek_m.f
solvel_m.f

Actually apply the SOR iterative scheme to
the grid generation equations and get the
grid. These subroutines are optimized for
use on multiple-processor SGI workstations.

New
subroutines,
but patterned
on the old
solve

85 sphbox.f Convert the outermost 3 surfaces on all 6
sides of any block into or out of spherical
coordinates.

Slightly
modified.

86 sphchk.f When going in and out of spherical
coordinates there is a problem. The phi
angle is the output from an arctan function,
which is multiple-valued. The phi can be on
different branches of the function. This
subroutine attempts to correct that, and put
them back on the same branch.

87 sphio.f Take any 3-D region, mapping into a
rectangular solid in the computational
domain, and convert it into or out of
spherical coordinates.

Much
modified to
be more
robust

88 sphpre.f In spherical coordinates the angles, in
radians, are going to be on the order of 1.
But the radii can be on any order. These
different scales can lead to numerical
problems. The solution is to scale things,
generate the grid, then unscale. This
subroutine prepares those scale factors.

89 sphsub.f Called by sphchk which does the indexing.
This actually does the work.

12

90 startup.f This gets the code ready to iterate. It calls
the appropriate input subroutine, prepares
those terms in the RHS which are fixed for
all computational time, initializes the
interiors of the blocks, takes the grid into
and out of spherical coordinates if
appropriate, and first calls the graphics if
appropriate.

New
subroutine.
Code taken
from main
and much
modified.

91 stretch.f Implements Vinokur's stretching function to
give a normalized tabulated data from 0 to 1.

New to this
code, but re-
named
version of a
subroutine of
indeterminat
e age and
unknown
authorship.

92 tfi2d.f Performs 2-D Trans Finite Interpolation.
Used in preparing the T&M-type RHS
terms.

New to this
code.

93 tfi3d.f Performs 3-D Trans Finite Interpolation.
Used in initializing the interiors of the
blocks, in the case of all six sides of the
block read-in-fixed.

New to this
code.

94 tm.f Calculate the T&M-type RHS terms. New to this
code

95 tweakpqr.f For the case of RHS terms being S&S-type
blended with T&M-type, in each iteration
we must take the p1, q1, and r1 terms and
subtract the T&M-type terms at the wall,
compute the P, Q, and R terms at each point,
update the X,Y,Z, and restore the p1, q1, and
r1 by adding the T&M-type back in. This
subroutine adds and subtracts the T&M-type
terms at the wall.

New
subroutine

96 writeit.f Writes the grid solution file, file14.

97 xferpqr.f Initialize the S&S-type RHS terms to the
T&M-type values if appropriate.

New
subroutine

98 plotit_g.f The driver for the graphics package. The
call to this, and some common blocks, are
the only interface between the batch part of
3DGRAPE/AL and this graphics package.

New
subroutine

99 adjust_g.f The grid surfaces the user wants to plot
typically contain some index values not
present in the coarse solution. So if we are
plotting a coarse solution we must modify
the requested index values to contain only
coarse points. Do so here.

New
subroutine

13

100 axislims_g.f Given the minimum and maximum values of
data represented by an axis, find "nice round
numbers" for the minimum, maximum, and
ticmark intervals used in plotting the axis.

New
subroutine

101 byebye_g.f Terminate graphical activity and exit the
code.

New
subroutine

102 coarse_g.f Subroutine coarse cycles through the coarse
parts in the iteration schedule, and then
interpolates from coarse to fine. Graphics
version. It calls plotit.

New
subroutine,
code taken
from main
program.

103 cross_g.f The when plotting the grid we have the
ability to zoom in and out. But that is done
on whatever is at the exact center of the
window. To put a region of interest at the
center of the window, we need to know
where the center is. This subroutine puts a
multi-colored cross at the exact center of the
window.

New
subroutine

104 datlin_g.f Draw the actual convergence history lines on
the plot.

New
Subroutine

105 dobut23_g.f The graphics has a screen button marked
"exit". But exiting can be complicated, with
confirmation and all. This subroutine
processes that button hit.

New
subroutine

106 dobut82_g.f Manage button hits and create the window
for convergence history plots.

New
subroutine

107
108

drawinsa_g.f
drawinsi_g.f

Draw the three control windows on the right
side of the screen, in their active and inactive
modes, respectively.

New
subroutine

109 drawtris_g.f Draw the little green triangles which indicate
the speed settings.

New
subroutine

110
111

drawxax_g.f
drawyax_g.f

Draw the axes on the convergence history
plots.

New
subroutines

112 findlegy_g.f Find the vertical location of the legend so
that it covers the fewest data points.

New
subroutine

113 fine_g.f Subroutine fine cycles through the fine parts
in the iteration schedule. As with subroutine
coarse, above, it comes in a batch and a
graphical version. This is the graphical
version. It calls plotit.

New
subroutine,
code taken
from main
program.

114 getlims_g.f Get the minima and maxima of the
convergence history data to be plotted.

New
subroutine

115 grstart_g.f Access the grid through the common blocks,
and make the grid plot objects upon first
entry to the graphics package.

New
subroutine

14

116 grstart2_g.f Access the grid through the common blocks,
and re-make the grid plot objects upon
subsequent entry.

New
subroutine

117 histpl_g.f Plot a convergence history. New
subroutine

118 kulur_g.f Select colors by number. New
subroutine

119 legend_g.f Plot the legend on the convergence history
plots.

120 lenstr_g.f Find the length of a character string.

121 limitit_g.f Impose a limit on how large or small the
absolute value of a number may be.

122 makecobj_g.f Make a plot object of the control window in
every possible button state.

New
subroutine

123 maketobj_g.f Make a plot object of the transform window
in every possible button state.

New
subroutine

124 maketri_g.f Make a plot object for the little green
triangles.

New
subroutine

125 makewin5_g.f Make the window for plotting the
convergence history plots.

New
subroutine

126 makewins_g.f Actually make the three small windows on
the right.

New
subroutine

127 makextrp_g.f Make the exit trap plot object for the control
window.

New
subroutine

128 mkhistob_g.f Make the screen button objects for the
history plot window.

New
subroutine

129 mkvsobj_g.f Make the view selection objects for the view
selection window.

New
subroutine

130 mmacts_g.f Interpret the actions of the middle mouse
button.

New
subroutine

131 movetri_g.f Interpret the mouse movement to determine
the speed settings.

New
subroutine

132 onbut_g.f A logical function. Is the mouse on a
specific button?

New
subroutine

133 pauz_g.f Wait for a mouse hit on a screen button in
the convergence history plot.

New
subroutine

134 pline_g.f Draw a line between two given points. New
subroutine

135 plstart_g.f Get ready to plot by calling all the
subroutines which make plot objects and
open windows.

New
subroutine

136 prepdata_g.f Prepare history data for plotting. New
subroutine

15

137 pvwds_g.f Draw words vertically. New
subroutine

138 transfm_g.f Do the transforms -- translation or rotation. New
subroutine

139 wfiloop_g.f Loop while waiting for a mouse interrupt. New
subroutine

140 zbufit_g.f Put the program in Z-buffer mode, and re-
draw the scene.

New
subroutine

141 makefile.cray A UNIX makefile to compile and link the
code, in the vectorized version, on a CRAY.

New
makefile

142 makefile.hp A UNIX makefile to compile and link the
code on an H-P workstation.

New
makefile

143 makefile.ibm A UNIX makefile to compile and link the
code on an IBM workstation.

New
makefile

144 makefile.sgi A UNIX makefile to compile and link the
code, in either batch or graphical version, on
a single-processor SGI workstation.

New
makefile

145 makefile.sgi_m A UNIX makefile to compile and link the
code, in either batch or graphical version, on
a multiple-processor SGI workstation.

New
makefile

146 makefile.sun A UNIX makefile to compile and link the
code on a SUN workstation.

New
makefile

147 blend.h Header file containing a common statement
containing arrays containing data used in
blending between the S&S-type and T&M-
type RHS terms

New header
file

148 etc.h Header file containing a common statement
containing various assorted scalar variables
and small arrays which don't logically fit
anywhere else.

New header
file

149 faces1.h Header file containing a common statement
containing arrays containing gammas (see
the transformed Poission equations), partial
derivatives on the faces, coefficient terms in
the S&S-type RHS terms, etc.

New header
file

150 faces2.h Header file containing a common statement
containing arrays containing various data per
block

New header
file

151 files.h Header file containing a common statement
containing character variables which are the
various filenames used in the code for
reading and writing

New header
file

152 history.h Header file containing a common statement
containing arrays containing data used in the
convergence history

New header
file

16

153 komment.h Header file containing a common statement
containing various character variables
(Fortran-77 frowns on having these in the
same common blocks as other types of
variables)

New header
file

154 limits.h Header file containing a common statement
containing arrays containing the limits and
increments of the indices, for the various
blocks

New header
file

155 matches.h Header file containing a common statement
containing arrays holding various data per
block

New header
file

156 params.h Header file containing a parameter statement
giving common array dimensions

New header
file

157 plcoms.h Header file containing common statements
containing various scalar variables and
arrays used by the plotting package

New header
file

158 tmcntrl.h Header file containing a common statement
containing arrays containing the T&M-type
RHS terms

New header
file

159 xyzcom.h Header file containing a common statement
containing X, Y, and Z arrays

New header
file

Table 3. 3DGRAPE/AL Program Files (Files 1 - 159)

Readers familiar with the earlier code will note that in several cases a large and unwieldy
subroutine has been broken up into more-manageable pieces, and by so doing new
subroutines have been created. But the actual code has just been moved to a new
subroutine and is in most cases essentially unchanged. Subroutine banner, containing
code taken from subroutine input, is an example. In several places -- the getdsi... sub-
routines, the poif... subroutines, the rhsf... subroutines, and in the grid quality package --
the practice of having six different subroutines (one for each face, wherein 1 and 2 are
nearly identical, 3 and 4 are nearly identical, etc.) has been done away with. Instead there
are now three subroutines (one to do the job for faces 1 and 2, another for faces 3 and 4,
etc.). Thus the total subroutine count is smaller that it would otherwise be, and redundant
code is removed.

Every subroutine or function called by the program is either contained in the program or
to be found in the IGL, with one exception. That exception, which applies only to SGI
workstations, is that subroutines dobut82_g.f and zbufit_g.f call the UNIX function
"system", which calls the UNIX function "scrsave". If difficulties regarding this arise
during linking, the user should simply comment out those calls. In doing so the ability to
make screen dumps from within the program will be lost.

17

PROGRAM FLOW ILLUSTRATED BY A CALL TREE

Following is a call tree for the program. Ideally, the entire call tree would be displayed in
one figure, but space doesn't permit. Therefore, detail call trees for certain of the
subroutines follow on subsequent pages. The reader can find out all the subroutines or
functions a subroutine calls by tracing along all the lines proceeding down and sideways
from that subroutine name.

Figure 1. Program Flow Illustrated by a Call Tree.

main
program

startup
(see detail)

coarse
(see detail)

fine
(see detail)

output
(see detail)

docoarse

Figure 1a. Subroutines and Function Called by Main Program.

initcoms jiggle

restart input19

input10
(see detail)

input16
(see detail)

getdsi12 init1dchecks

tfi3d

xferpqrchecked getdsi34 getdsi56

bannercheckco readhi readangs

buglistcheckhow stretchlower

sinhinv sininv

startup

Figure 1b. Detail of Subroutines and Functions Called by Startup.

18

finecoarse

interp

interp3interp2interp1

sphboxoutparts solve
(see detail)

makerhs
(see detail)

boundary
(see detail)

sphiowriteit plotit
(see detail)restart sphchk

bannerlower xferpqr sphsub

buglist

Figure 1c. Detail of Subroutines Called by Coarse and Fine. Plotit Called Only by
Graphical Version.

output

writeit restart

lower xferpqr banner

buglist

quality
(see detail)

Figure 1d. Detail of Subroutines Called by Output.

19

q2d34relq2d12rel

qualsrk qualsrlqualsrj

getmedan qualorthgetstdev

qual2d34q2d56rel qual2d56

qual2d12

getang

quality

Figure 1e. Detail of Subroutines and Function Called by Quality.

input16input10

sphprebanner frezinit

buglist

normst elipinitgetedges fixinit plainit

cylinit pntinitaxinit matinit chkmat

lower

Figure 1f. Detail of Subroutines Called by Input10 and Input16.

20

solve

rhsf56rhsf12 rhsf34 tweakpqr

edge

Figure 1g. Detail of Subroutines Called by Solve in Version For Single-Processor
Workstations.

solve

solvelsolvej solvek

rhsf56rhsf12 rhsf34 tweakpqr

edge

Figure 1h. Detail of Subroutines Called by Solve in Version For CRAYs and
Multiple-Processor SGI Workstations.

makerhs

poif34poif12 poif56 tm xferpqr

edge tfi2dlarcs

Figure 1i. Detail of Subroutines Called by Makerhs.

21

boundary

cylbdplabd axbd elipbd matbd

cylsubplasub axsub elipsub

Figure 1j. Detail of Subroutines Called by Boundary.

plotit

grstart2 wfiloop plstart
(see detail)

grstart

adjust mmacts
(see detail)

kulur

transfm

drawinsidrawinsa

onbut

crossmovetri

byebye

drawtris

Figure 1k. Detail of Subroutines Called by Plotit. Plotit Called Only in Graphical
Version.

22

mmacts

zbufitcross

pline

drawinsa

drawtris

onbutkulur

drawinsaoutput
(see detail)

byebye

dobut23

drawtris

dobut82

makewin5 pauzprepdata

getlims datalinesaxislims limitit

histpl

findlegy legend

drawyaxdrawxax

Figure 1l. Detail of Subroutines Called by Mmacts. Mmacts Called Only in
Graphical Version.

23

plstart

maketobj makecobj makextrp makextrpmakewins

restart

input19

maketri

Figure 1m. Detail of Subroutines Called by Plstart. Plstart Called Only in
Graphical Version.

The dimension sizes of the arrays, in the common blocks and elsewhere, are specified in
the header file "params.h". They are reproduced in the table below. There is nothing
special about the sizes as shipped; they can be re-adjusted to any values appropriate to the
user's application. As shipped, they will run all the supplied example cases. If they are
too big the executable will take up excess space on disk and in memory, and for that
reason it might run slower; if they are too small the program will print an error message
and quit.

Name of
Parameter:

Value, as
code is

shipped:

Use and meaning:

limpts 200000 Maximum number of points, summed over all blocks

limsrf 25000 Maximum number of controlled points, summed over all
faces

limvec 130 Maximum dimension value of j, k and l in any block.
Must be less than limsrf.

limblk 5 Maximum number of blocks

limhis 3000 Maximum number of iterations, all parts

limparts 10 Maximum number of parts in the iteration schedule

limviews 50 Maximum number of surfaces per view in graphical
version

Table 4. List of Parameters

The program uses ten logical unit numbers for input and output, numbers 10 through 19
inclusive. They are described in the table below:

24

Logical
unit

numbers :

Character
variables
containing

the
associated
file names:

Where
those

character
variables

are
allocated:

Subroutine
in which
those unit
numbers
are used:

Whether
they are
input or
output :

What data is in
that I/O:

10 fnamin10 input10.f input10.f input new start control
scalars

11 ffnamin11 files.h fixinit.f input X,Y,Z of read-in-
fixed surfaces

12 fnamin12 files.h readhi.f input cell heights on
controlled surfaces

readangs.f input angles w/r
controlled surfaces

13 fnsmooin input19.f input19.f input read a grid
generated elsewhere

14 fnamgrid files.h writeit.f output write out the
finished grid

15 fnamot15 files.h restart.f output write a restart file

16 fnamin16 restart.f restart.f input restart control
scalars

17 fnamin17 restart.f restart.f input read a restart file

18 viewsfn files.h grstart_g.f input indices of surfaces
to be viewed

19 fnamin19 input19.f input19.f input smooth start control
scalars

Table 5. Logical Unit Numbers Used in this Program

Because Table 5, above, could also be taken as a list of the files read or written by the
program it might be appropriate to mention here that the graphics version of the code,
documented in a subsequent section, can write screen-dump files for making pictures.
Screen dumps of grid pictures will be named plotit.01.rgb, plotit.02.rgb., etc., and screen
dumps of convergence history plots will be named convhist.01, convhist.02, etc.

There are comments in the makefiles giving further information about compiling and
linking.

Depending on how the program was linked, it is executed by typing either "gral" or
"gral_g".

25

INPUT

THE FIRST TWO LINES

The first thing 3DGRAPE/AL does as it begins execution is to write an interactive
prompt asking what kind of a grid generation run this is. There are three acceptable
responses. They are read, and then the user is prompted for another datum, the filename
from which subsequent data is to be read. A carriage-return causes the program to use its
default for this filename. These matters are summarized in the following table:

Interactive
response:

Result: Unit from
which

subsequent
data is read:

Default
filename:

"newstart" A new grid is generated from initial
conditions

file10 "file10"

"re-start" A partly-generated grid is further iterated file16 "file16"

"smooth" A grid already generated elsewhere is read
in and smoothed

file19 "file19"

Table 6. The First Two Lines of Input Data

The preceding discussion of the first two lines of input assumes that 3DGRAPE is being
run on an interactive machine. If it is being run on a batch machine, the prompts will be
written to the printout file, along with an echo of the input. The actual input of these two
lines in this case will come from the main job input stream. Literally, they are read by
the logical unit denoted in the program by an asterisk, as in "read(*,100)...."

When running the program on an interactive machine one can grow weary of typing those
first two lines of data. A solution to this is to store those two lines of input data in a file
and re-direct it into the program. For example, in running the first sample case, discussed
below, the user might put the two lines of input data:

newstart
boxall.f10

into a file and name it "boxin". The user would then execute the program by typing:

gral < boxin

or
gral_g < boxin

26

FILE10 -- CONTROL SCALARS FOR NEW START

Input on file10 is formatted text, and thus is readable by humans. The records are at most
70 columns wide. All data for file10 must be in exactly the right columns. Column
numbers will be clearly delineated below, and they must be followed exactly. There is
some consistency here: face numbers will always be read in I1 format, block numbers in
I2 format, indices and certain other integers in I3 format, floating-point numbers in F12
format, and file names in A15 format. The reading of static text and character strings is
case-insensitive, meaning that it ignores whether letters are in upper- or lower-case.
There is one exception to this: filenames, read on a UNIX system, are case-sensitive.
When a "line" of input data must be continued, the continuation line always begins with
three dots. There are three places in the file10 input where blank lines are allowed:
before and after "iterations" lines, before "block" lines, and before "face" lines. Blank
lines in these places can greatly enhance clarity and readability.

There are places in the input where the user is given the option of entering either a
character string or a floating-point number. The program is smart enough to sort out that
form of input. It was stated earlier that floating-point numbers are read in F12 fields. To
be precise, the format specification is F12.0. But that does not mean that only whole
numbers may be read. According to the rules of Fortran, a decimal point in an input
record overrides any placement of the decimal point implied by the format statement.
Thus the user may put a decimal point anywhere in the floating-point input fields.

The discussion of each input will be preceded by a list of all relevant data. Note that
some input lines require continuation. The first column in this list is the line number.
The next column gives the range of column numbers for each field. Then a code will
indicate what type of datum this is:

• "st" for static text (a character string which should be entered exactly as stated,
and which is required for readability),

• "i" for integer,

• "f" for floating-point number,

• "n" for file name

• "c" for a character string

In some places the user may put into a field either a character string or a number. Those
codes are:

• "c/f" a character string or a floating point number

• "c/i" a character string or an integer

The fourth column contains a brief description of what that datum is. The table will be
followed by one or more examples above a column number key. After that will follow a
discussion of the indicated input line(s).

The input 3DGRAPE/AL expects to read from file10 begins with several lines which give
information about the entire grid and about the entire run of 3DGRAPE/AL. It then goes
into an outer loop on block number, and for each pass it reads information about the
block. Inside that is an intermediate loop on face number and for each pass it reads
information about the face. Inside that is an inner loop on section number within the
face, reading information about each section. At the conclusion of those nested loops, it
is finished reading from file10.

Because the program will know the number of blocks, and knows that there are six faces
per block, and will know into how many sections the faces are divided, it will know when

27

all the required input data have been read. I.E., it will know when to stop reading.
Therefore the user can store other input data records, not currently in use, below the last
line to be actually read. Users have found this convenient.

The "run-comment" lines

Line Column Datum
 no.: nos: type: Description:

1-20 st "run-comment "

21-70 c free-field comment describing this run

run-comment Blah, blah, blah.
run-comment What this data is all about.
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The file10 input begins with exactly two of these lines. The comments on them will
annotate the printout file, and they will help the user to remember what each file10
dataset was used for.

The "number-of-blocks" line

Line Column Datum
 no.: nos: type: Description:

1-17 st "number-of-blocks="

18-19 i number of blocks in this grid

20-28 st "-heading="

29-31 c/i printout heading repetition code

32-50 st "-filename-18-views="

51-65 n name of file for input as file18

number-of-blocks=01
number-of-blocks=01-heading=kdf
number-of-blocks=01-heading=000
number-of-blocks=01-heading=054
number-of-blocks=01-heading=kdf-filename-18-views=my_picture_data
12345678901234567890123456789012345678901234567890123456789012345
 11111111112222222222333333333344444444445555555555666666

The printout features a convergence history for each block. There is a heading telling
what data are in the columns of numbers. By the default, obtained by putting blank, zero,
or kdf (meaning "keep default") in cols. 29-31, the heading is printed once per block. If

28

the user wants this heading to be printed more often, the number of lines of data between
headings should appear in this field.

From file18 the program reads input describing just what points are to be drawn in each
of the views of the iterating grid as shown by the graphical version of the code. Non-
graphical versions of the code ignore this field. The contents of this file are described in
a subsequent section.

Everything on this line after column 19 is optional.

The "iterations" lines

The "iteration lines" are actually a set of three lines, with there being two options for the
form of the second line. This set of three lines is repeated for each "part" in the iteration
schedule (this is explained below). The first line:

Line Column Datum
 no.: nos: type: Description:

1 1-11 st "iterations="

1 12-14 i the number of iterations in this part

1 15-23 st "-control="

1 24-25 c overriding global switch on control, either "ye" or "no"

1 26-35 st "-rhs-type=

1 36-47 c RHS type (see below)

1 48-60 st "-coarse/fine="

1 61-66 c "coarse" or "fine "

iterations=100-control=no-rhs-type=S&S-initzero-coarse/fine=coarse
iterations=100-control=no-rhs-type=keep-default-coarse/fine=fine
iterations=100-control=ye-rhs-type=S&S-init-T&M-coarse/fine=fine
iterations=100-control=ye-rhs-type=Thomas&Middl-coarse/fine=fine
iterations=100-control=ye-rhs-type=blendS&S&T&M-coarse/fine=fine
iterations=100-control=ye-rhs-type=s&s-continue-coarse/fine=fine
123456789012345678901234567890123456789012345678901234567890123456
 111111111122222222223333333333444444444455555555556666666

Option 1 for the second line:

Line Column Datum
 no.: nos: type: Description:

2 1-20 st "...relax-param-type="

29

2 21-25 c For this option, the character string "fixed"

2 26-44 st "-relax-param-value="

2 45-56 c/f value for uniform relaxation parameter

...relax-param-type=fixed-relax-param-value=keep-default

...relax-param-type=fixed-relax-param-value= 1.0
12345678901234567890123456789012345678901234567890123456
 11111111112222222222333333333344444444445555555

Option 2 for the second line:

Line Column Datum
 no.: nos: type: Description:

2 1-20 st "...relax-param-type="

2 21-25 c For this option, the character string "optim"

2 26-39 st "-recomp-every="

2 40-42 c/i recomputation interval

2 43-52 st "-how-much="

2 53-64 c/f scale factor for optimum relaxation parameter

...relax-param-type=optim-recomp-every=kdf-how-much=keep-default

...relax-param-type=optim-recomp-every=010-how-much= 0.75
1234567890123456789012345678901234567890123456789012345678901234
 1111111111222222222233333333334444444444555555555566666

The third line:

Line Column Datum
 no.: nos: type: Description:

3 1-16 st "...abc-override="

3 17-28 c/f overriding abc value

...abc-override=no

...abc-override=123456789.12
1234567890123456789012345678
 1111111111222222222

This program has the ability to divide the iterations it will do in a run into parts, with all
the data shown on these lines being variable between parts. That can enable the
experienced user to accomplish as much in one execution of this code than in several
executions of other codes. A set of these three lines should be present for each part in the

30

iteration schedule. The maximum number of parts allowed is dependent upon a parame-
ter set in params.h; that parameter is set to 10 as the code is delivered.

The "face" lines, described in a subsequent section, turn the control of cell height and
skewness on or off for each face, and specify what cell height is being requested if the
control is on. The "control" parameter on the first line of this set of "iteration" lines is a
global switch which overrides whatever is found on the "face" lines. If this switch is on,
then the control is on or off according the individual "face" lines; if this switch is off then
there will be no control regardless of that the "face" lines say. With no control, i.e., with
the RHS terms remaining at zero, the Poisson Equations become the Laplace Equations.
These give rise to a grid which is smooth, but has cell heights tending to be uniform and
has no tendency toward orthogonality.

A tip --> It is highly recommended that the user start with one part, having a few
iterations (e.g., 5) and no control. This should either be done with the graphical version,
or the grid should be iterated in batch and then examined using other graphical tools.
The boundary points and several representative interior surfaces of each block should
be observed. After zero iterations (i.e., as of the initial conditions) the grid may look
rather strange, but that strangeness should go away during the first iteration or two.
After that the user can verify that the boundary data and boundary treatments are
correct. These boundary conditions are the source of many of the input errors users
make, and it is much easier to find and correct them at this point rather than after the
complications of RHS terms and long iteration runs have been added.

The user might then want to iterate an uncontrolled solution to convergence, which
should further exonerate the boundary data and conditions. After this is seen to work,
the user should re-generate the grid, with control terms.

There are choices for which type of Right-Hand-Side terms (also known as "control
terms") is to be used in each iteration part. See columns 36-47 in the first line of this set.
They are:

• "keep-default" -- This, as it says, causes the program to use the default RHS type.
For the first iteration part of a new start, this is the same as "S&S-initzero" (see
below). For a subsequent iteration part, or at the start of a restart run, it is the
same as "S&S-continue" (see below).

• "S&S-initzero" -- Thus causes the Steger & Sorenson (S&S-type) RHS terms to
be used. They are initialized to zero, and then updated iteratively at teach time
step. They converge to the values which give the desired cell height and skew-
ness at boundary surfaces, with control effects decaying exponentially with dis-
tance from the boundary surface.

• "S&S-init-T&M" -- This is just like "S&S-initzero" except that the terms are ini-
tialized to the values computed by the Thomas & Middlecoff (T&M-type)
method. This can speed convergence by providing better initialization of the RHS
terms. But note that T&M-type requires that all six faces of the block consist of
fixed points in space (rather than floating around on some surface), hence this
choice for initialization of the S&S-type terms has the same limitation.

• "S&S-continue" -- This option assumes that it is a subsequent iteration part or a
restart run, and that S&S-type terms were used previously. It simply continues to
iterate on the S&S-type terms, further refining them.

31

• "Thomas&Middl" -- Use the Thomas & Middlecoff RHS terms. All six faces of
the block must consist of fixed points in space (rather than floating around on
some surface).

• "blendS&S&T&M" -- This option uses both S&S-type and T&M-type RHS
terms, blended as a function of the distance from the boundary surfaces. It seems
that S&S-type terms give the best results near the boundary surfaces, and that
T&M-type gives the best results in the interior of the blocks, and this blending
attempts to use that principle to give the best of both. Note that the limitation that
all six faces be fixed points in space applies here, as with all uses of the
T&M-type terms.

If the control terms are turned off, then this datum telling which type of control terms are
to be used is ignored.

This code includes an artifice to accelerate convergence, which is called "coarse-fine grid
sequencing." It is like one-half of a pass through a multigrid solver.10 Every third point
in each direction (which together make up the "coarse grid") is used in a course iteration
step; all points (which together make up the "fine grid") are used in a fine step. To
employ this technique the user should specify coarse steps and iterate to convergence,
including the use of RHS terms as desired. The user should follow that with iteration to
convergence again, this time using fine steps. The program will automatically interpolate
from the coarse data to make an initial fine grid after the last coarse part. Any number of
coarse steps may be followed by any number of fine steps, but coarse solution steps may
not follow fine steps.

The logic here is that the coarse solution will go fast because it does approximately one-
twenty-seventh as much arithmetic per step, and that the fine solution should go fast
because it starts with initial conditions which differ from the final solution only by errors
introduced during the interpolation between coarse and fine. The effectiveness of this
technique varies greatly from case to case, but the user can count on a reduction in CPU
time of at least 50%, sometimes much more. There is a drawback, and it is that if coarse-
fine grid sequencing is to be used the maximum number of points in each of the three
coordinate directions in every block must be of the form 3n+1 for n some integer greater
than or equal to 4 (example: 13, 16, 19, 22, etc.). In some cases this requirement is
found to be burdensome, and so the use of this speedup procedure is not possible.

The Poisson equation solver in 3DGRAPE/AL uses a point-Successive-Over-Relaxation
(point-SOR) algorithm. This algorithm has in it a "relaxation parameter" which controls
the speed at which the solution process is driven. This parameter, usually given the name
Omega (Ω), varies between 0. and 2. If Ω is set too low, the solution will take an exces-
sive number of iterations; if it is set too high the solution process will "blow up" and no
solution will be found. The simplest way to set Ω is to use a fixed value. Experience has
shown 0.7 to be a safe choice, and that is the default. The user may select this, or any
other fixed value, using option 1 for the second line in this set.

10An attempt was made to implement a true multi-grid solver in this code, but it didn't work. It was
determined that the basic reason for the failure was that in the finished grid the cell heights in the direction
normal to the boundary surface increase in a generally exponential fashion with distance from the surface,
but the exact rate of that increase is indeterminate. Thus, although the user specifies the spacing between
the boundary and the first node in the field, it is not possible to specify the spacing between the boundary
and the 2n-1-st node in the field for n>1. That spacing is needed to formulate the RHS term at the n-th
multigrid level. An estimate can be made, but it is not accurate. Thus, there was a fundamental inconsis-
tency between the RHS terms being solved at the different multigrid levels. The different multigrid levels
were attempting to solve what were, in effect, different equations. Obviously, such an algorithm would not
converge.

32

Option 2 for the second line in this set uses a locally-varying and time-varying optimum
relaxation parameter. Use of an optimum Ω can minimize the number of iterations
required to find the grid solution. It is calculated using the Ad-Hoc method of Erlich.
(Ref. 8). This method requires a significant amount of calculation to find the Ω at every
time step, and that can use up time saved by Ω being optimum. One solution to this
conundrum is to re-compute the optimum Ω at intervals. The "recomputation interval" is
the number of steps in that interval; it's default value is 10. Lastly, there is the scale fac-
tor for the optimum relaxation parameter. Experience has shown that Ω calculated this
way can sometimes be a little too big, causing blow up. Therefore the user is given a
scale factor by which the Ω is multiplied; it's default is 0.75.

Just as the "face" lines (described below) give the desired cell heights and the "control"
parameter on this first of these three lines gives a global override for it, similarly, the face
lines give values for the abc parameter (also described below) and the third line here
gives a global override for it. If a number appears on this line, it will take precedence
over the abc parameter values specified on the face line. The word "no" in that field
causes the abc parameter values specified on the face lines to be used.

The "filename-11" line

Line Column Datum
 no.: nos: type: Description:

1-18 st "filename-11-input="

19-33 n name of file for input as file11

34-52 st "-filename-12-output="

53-67 n name of file for input as file12

filename-11-input=my_xyz_data -filename-12-input=my_cell_heights
1234567890123456789012345678901234567890123456789012345678901234567
 1111111111222222222233333333334444444444555555555566666666

The data in file11 are the X,Y,Z coordinates of points on boundary surfaces, which are
supplied from another source. They are described in detail in a subsequent section.

Users familiar with the input for the earlier 3DGRAPE code should note that logical unit
12, designed for debugging in the earlier code and rarely used, has a completely new
meaning here. In 3DGRAPE/AL unit 12 may, depending on the file10 input, be used to
input the cell heights and skewness of grid cells on boundaries. Its format is described in
a subsequent section.

The "filename-14" line

Line Column Datum
 no.: nos: type: Description:

1-24 st "filename-14-grid-output="

33

25-39 n filename for main grid output

40-45 st "-form="

46-52 c "3dgrape" or "plot3ds" or "plot3dm" or "charact"

filename-14-grid-output=my_grid_file -form=3dgrape
filename-14-grid-output=my_grid_file -form=plot3ds
filename-14-grid-output=my_grid_file -form=plot3dm
filename-14-grid-output=my_grid_file -form=charact
1234567890123456789012345678901234567890123456789012
 1111111111222222222233333333334444444444555

The main grid output may take any one of four different forms. The first is a form
designed for this program, called "3dgrape". It is best described by the following pseudo-
code:

 open(unit=14,status='new',form='unformatted',file='my_grid_file')

 write(14) maxblk

 do nblk=1,maxblk

 jmax=jmaxa(nblk)
 kmax=kmaxa(nblk)
 lmax=lmaxa(nblk)

 write(14) jmax,kmax,lmax

 write(14) (((x(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),
1 (((y(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),
2 (((z(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax)

 enddo

 close(unit=14)

If "plot3ds" is specified the data on file14 are written in the form required by the well-
known NASA graphics program PLOT3D, using its single-block option. If "plot3dm" is
specified the data on file14 are written in the PLOT3D format, using its multiple-block
option. These options, also, are best seen in pseudo-code:

 open(unit=14,status='new',form='unformatted',file='my_grid_file')

 if(maxblk.gt.1) write(14) maxblk

 write(14) (jmaxa(nblk),kmaxa(nblk),lmaxa(nblk),nblk=1,maxblk)

 do nblk=1,maxblk

 jmax=jmaxa(nblk)
 kmax=kmaxa(nblk)
 lmax=lmaxa(nblk)

 write(14) (((x(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),

34

1 (((y(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),
2 (((z(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax)

 enddo

 close(unit=14)

If "charact" is specified, the data on file14 are written as formatted data. This is useful
for users running on computers connected to a network which does not have the facility
to transfer binary data. A main grid output file created this way will be several times as
large as if either of the three other options had been used, and it will take several times as
long to read and write, but for some users this approach is unavoidable. This form is
essentially the "3dgrape" form converted to formatted output:

 open(unit=14,status='new',form='formatted',file='my_grid_file')

 write(14,100) maxblk

 do nblk=1,maxblk

 jmax=jmaxa(nblk)
 kmax=kmaxa(nblk)
 lmax=lmaxa(nblk)

 write(14,100) jmax,kmax,lmax
100 format(3i10)

 write(14,101) (((x(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),
1 (((y(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax),
2 (((z(j,k,l,nblk),j=1,jmax),k=1,kmax),l=1,lmax)

101 format(5e15.6)

 enddo

 close(unit=14)

The "write-for-restart" line

Line Column Datum
 no.: nos: type: Description:

1-18 st "write-for-restart="

19-20 c either "ye" or "no"

21-40 st "-filename-15-output="

41-55 n filename for restart file

write-for-restart=no-filename-15-output=my_restart_file
1234567890123456789012345678901234567890123456789012345
 1111111111222222222233333333334444444444555555

35

3DGRAPE/AL has a restart capability. This should not be confused with the parts in the
iteration schedule. Parts in the iteration schedule are completed during one run; the
restart capability allows it to make more than one run. The user can run it a while, and
then decide to run it some more, either with or without some changes. More things can
be changed at a restart than when going between parts; everything appearing in files 11
and 16, described in subsequent sections, can be changed at a restart.

To make restart possible, the code writes a file containing all it needs to continue where it
left off. File15 is that file. It is output by the code in the run before the restart, and then
read back in on the restart run. It is a very large file, containing the contents of most of
the common arrays, and some other material as well. The file is unformatted, and so not
readable by humans.

The character-string "ye" or "no" in columns 19-20 determines whether the file is to be
written. The file name appears in columns 41-55.

The "omegpqr" line

Line Column Datum
 no.: nos: type: Description:

1-8 st "omegpqr="

9-20 c/f relaxation parameter for S&S-type RHS terms

21-28 st "-pqrlim="

29-40 c/f growth limit factor for S&S-type RHS terms

omegpqr=keep-default-pqrlim=keep-default
omegpqr=123456789.12-pqrlim=123456789.12
1234567890123456789012345678901234567890
 1111111111222222222233333333334

If the user chooses S&S-type RHS terms, the code iterates to find them at the same time
that it iterates to find the X,Y,Z. There is an Ω for the S&S-type RHS terms, just as for
the X,Y,Z, although its size range is different. The default value is 0.3. There is another
input parameter affecting iterations for finding the S&S-type RHS, and that is "pqrlim".
The S&S-type RHS terms tend to blow up in the first few iterations, so their growth rate
is limited. Their absolute value may grow by not more than this parameter times their
value at the previous time step.11 The default value for this is 0.5.

The "quality-check" line

Line Column Datum
 no.: nos: type: Description:

1-14 st "quality-check="

11This has the curious effect of causing their growth to be limited by an upward slanting straight line on a
semi-log plot, when plotted as a function of iteration count.

36

15-16 c "ye" or "no"

17-30 st "-output-after="

31-35 c "parts" or "done "

quality-check=ye
quality-check=ye-output-after=parts
quality-check=no-output-after=done
12345678901234567890123456789012345
 11111111112222222222333333

The program includes a grid quality evaluation feature which computes and prints
maxima, minima, medians, and averages of cell heights and non-orthogonality, at bound-
aries and in the interiors of the blocks of the finished grid. It requires some CPU time
(approximately the same as one-and-one-half fine iterations), and it generates several
pages of output. The datum in columns 15-16 turns this feature on and off.

By default, the program writes the grid solution file (file14) and the restart file (file15)
once, after finishing all the parts in the iteration schedule. But users using large amounts
of computer time may wish to save their work after each part in the iteration schedule. If
"parts" is found in cols. 31-35, the grid solution file, along with the restart file if a restart
file is called for, will be written after each part in the iteration schedule. The file names
used will be those given above, with appending characters giving the number of the
iteration part after which they were written. For example, if "parts" is selected here, and
"my_grid" is given for the name of file14, and three parts are used in the iteration
schedule, the resulting grid solution files will be "my_grid.1", written after the first
iteration part, "my_grid.2", written after the second iteration part, and "my_grid", written
after the last iteration part. "Done" or blanks in cols. 31-35 cause the files to be written
only once, after the last iteration part.

Everything after column 16 is optional.

The foregoing input data records give information about the entire grid-generation
operation being conducted by this run of 3DGRAPE/AL. Following these lines the pro-
gram goes into an outer loop on the block numbers. For each block a group of lines must
be read which give characteristics of the block.

The "block-comment" line

Line Column Datum
 no.: nos: type: Description:

1-6 st "block-"

7-8 i number of this block

9-20 st "-comment "

21-70 c free-field comment describing this block

37

block-01-comment Blah, blah, blah.
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The comment in the comment field of the block statement will be used to annotate the
printout. The printout will include a convergence history for each block, labeled with
these comments.

The "dimension" line

Line Column Datum
 no.: nos: type: Description:

1-12 st "dimension-j="

13-15 i maximum value of first subscript, j

16-28 st "-dimension-k="

29-31 i maximum value of second subscript, k

32-44 st "-dimension-1="

45-47 i maximum value of third subscript, l

dimension-j=019-dimension-k=031-dimension-l=022
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The dimensions of each block are variable, and may be set by the user at execution time.
The dimension sizes must in every case be at least 4. If "coarse" iteration steps are to be
performed, then the dimension sizes must be of the form 3n+1 for n some integer greater
than or equal to 4. The upper bound on these dimension sizes is indirect. They determine
the total number of points in the grid, which is limited by one of the parameters in
"params.h", which is limited by the memory of the computer on which the program is
installed.

The "handedness" line

Line Column Datum
 no.: nos: type: Description:

1-11 st "handedness="

12 c either "r" or "l"

13-22 st "-initcond="

23 c either "j" or "k" or "l" or "t" (see below)

38

24-33 st "-cart/sph="

34-42 c either "Cartesian" or "spherical"

43-50 st "-numtfi="

51-53 c/i number of TFI iterations (see below)

handedness=r-initcond=j-cart/sph=cartesian
handedness=r-initcond=k-cart/sph=spherical
handedness=r-initcond=l-cart/sph=cartesian-numtfi=kdf
handedness=l-initcond=t-cart/sph=cartesian-numtfi=010
12345678901234567890123456789012345678901234567890123
 11111111112222222222333333333344444444445555

The "handedness" of the grid -- either right-handed or left-handed -- may vary from block
to block. For Laplacian grids it is irrelevant. But for grids with control activated it is
used to choose the sign of a square root in the computation of the S&S-type RHS terms,
so it must be set properly.

The handedness of a grid can be determined according to the right-hand rule, or in the
following equivalent way. Choose any point (j,k,l). A unit vector in the ξ direction is a
vector from that point to the point (j+1,k,l). Similarly, a unit vector in the η direction is a
vector from (j,k,l) to (j,k+1,l), and a unit vector in the ζ direction is from (j,k,l) to
(j,k,l+1).

The three vectors will be bound tail-to-tail-to-tail at the point (j,k,l). Imagine them
defining the axes of a locally Cartesian ξ,η,ζ coordinate system. Imagine an ordinary
screw, placed coincident with the ζ axis. Then imagine rotating some point on the head
of that screw from the positive ξ axis to the positive η axis. If that rotation produces
movement of the screw in the positive ζ direction, then the grid is right-handed. If that
rotation produces movement in the negative ζ direction, then the grid is left-handed.

When using spherical topology (see below), X,Y,Z coordinates of each point in the block
are converted to spherical coordinates ρ,θ,φ. This transformation can sometimes cause
the handedness to be reversed, in which case the handedness on this input line must be
reversed. The symptom of this problem is that when the RHS terms are activated utterly
nonsensical cell heights at the body rapidly emerge, either much too large or having
negative volumes. If this happens, as it did in the hemisphere-cylinder-cone example
case which is shown in a subsequent section, the user should simply reverse the
handedness in the input data for the block.

The character in column 12 should indicate that handedness: "r" for right-handed or "l"
for left-handed. Users frequently make mistakes on this point, with the result being grids
with lines repelled from the controlled faces rather than attracted. Rather than agonize
analytically over this point, the user encountering such symptoms might want to simply
reverse the handedness and try again.

In starting an execution of the grid generator, once points have been initialized in some
way on all six faces of the block, the need arises to initialize the points inside the block.
There are two options here. The first is to have the interior points distributed between
opposing boundary points on a straight line, with spacing along that line determined by

39

Vinokur's two-ended stretching algorithm.12 The user chooses the coordinate direction in
which that distribution is to be applied by entering j, k, or l in column 23.

The second option for distributing the points in the interior of the blocks is to use Three-
Dimensional Trans-Finite-Interpolation (TFI). To use this option, the user should place
"t" in column 23. Note that the use of TFI in this code requires that all six faces of the
block consist of fixed points. Therefore, if any block has a face which has points floating
about on an analytical surface, or a face which is a block-to-block boundary face, this
option cannot be used.

It has been stated that 3DGRAPE/AL should be able to make a grid in any region into
which a cube or cubes can be warped. This is true, but for cases having spherical
topology, i.e., having a spherical axis , certain mathematical singularities occur and spe-
cial measures must be taken. The coordinates in such zones are transformed from
Cartesian coordinates X,Y,Z into spherical coordinates ρ,θ,φ. An iteration is performed
on the grid in that space. Then the outermost four shells (or cubic surfaces) are converted
back to Cartesian coordinates. Boundary conditions are applied, and the surfaces are
transformed back into spherical coordinates. This is iterated to convergence, and the
entire block is transformed back into Cartesian coordinates before being written out.

To utilize this option in any block, the user should put "spherical" into columns 34-42.
Otherwise, "cartesian" should be entered in those columns. The spherical axis must be
coincident with one of the coordinate axes.

The 3-D TFI algorithm iterates to optimize the volume distribution, and the datum in
cols. 51-53 is the number of iterations used. "kdf" here, meaning "keep default," causes
10 iterations to be used. This datum is only referenced if "t" is placed in column23;
otherwise it is ignored.

The "polar-axis" line

Line Column Datum
 no.: nos: type: Description:

1-11 st "polar-axis="

12 c either "x" or "y" or "z"

13-19 st "-along="

20 c either "j" or "k" or "l"

21-28 st "-around="

29 c either "j" or "k" or "l"

30-37 st "-center="

38-49 f location on polar axis of spherical center

12Vinokur, M., "On One-Dimensional Stretching Functions for Finite-Difference Calculations," J. Comp.
Phys., vol. 50, no. 2, May 1983, pp. 215-234.

40

polar-axis=x-along=k-around=l-center= 100.
1234567890123456789012345678901234567890123456789
 1111111111222222222233333333334444444444

This line is read only if "spherical" appears on the preceding line. In that case,
3DGRAPE/AL needs to know which axis is the polar axis. That datum is entered in col-
umn 12. The program then needs to know which index runs along that axis, entered in
column 20, and which index runs around it, entered in column 29. In the spherical case
neither the body nor the outer boundary need be exactly spherical, but they should be
somewhat similar to a sphere. Given that, it should be possible to locate an approximate
center to that sphere. That center would, of course, lie on the spherical axis. The location
of the approximate center is given by entering its location on the axis in columns 38-49.

The "freezeblock" line

Line Column Datum
 no.: nos: type: Description:

1-12 st freezeblock=

13-15 c "yes" or "no "

freezeblock=no
freezeblock=yes
1234567890123456789012345678901234567890123456789
 1111111111222222222233333333334444444444

In generating a large, multiple-block grid, it is sometimes advantageous to be able to
freeze some of the blocks while continuing to iterate on others. If "no " or blanks are
placed in columns 13-15, the block will be iterated, as is normally the case. If "yes' is
placed in those columns, this block will not be iterated, and will be frozen. This line
must be present, or an error will result.

This concludes the inputs which give characteristics of the block. At this point
3DGRAPE/AL goes into an intermediate loop on the six faces of the computational cube.
It expects to read information which applies to each face. Blank lines may appear before
a "face" line.

The "face" line

Line Column Datum
 no.: nos: type: Description:

1-5 st "face-"

6 i face number

7-13 st "-sects="

14-15 i number of sections into which this face is divided

41

16-23 st "-normal="

24-35 c/f "uncontrolled" or cell height or "n-i-stations" or "read-
each-pt" (see below)

36-40 st "-abc="

41-52 c/f "keep-default" or stretching parameter

53-58 st "-angs="

59-70 c "keep-default" or "default+edge" or "def-1-read-2" or
"read-1-def-2" "read-each-pt" (see below)

face-1-sects=01-normal=uncontrolled-abc=123456789.12-angs=keep-default
face-1-sects=01-normal=123456789.12-abc=keep-default-angs=default+edge
face-1-sects=01-normal=4-k-stations-abc=keep-default-angs=def-1-read-2
face-1-sects=01-normal=read-each-pt-abc=keep-default-angs=read-1-def-2
face-1-sects=01-normal=read-each-pt-abc=keep-default-angs=read-each-pt
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The face numbers should appear in numerical order, from one to six. The face may be
divided into sections. The maximum number of sections per face is 10.

The overall purpose of the data in columns 24-35 is to specify whether or not the cell
heights on the boundary surface will be controlled or not, if so how the required cell
heights are to be given, and in one case to actually give the height. There are four differ-
ent forms acceptable here:

• The first is "uncontrolled." This means that the control terms are deactivated on
this face. This boundary treatment should be used for any boundary that is not a
fixed boundary.

• The second form of input is to simply enter a floating-point number. This acti-
vates the control terms on this face. The program will try to make the cells touch-
ing this face be locally near-orthogonal, and will try to make them the height,
given in user units, by the floating-point number. This input form causes the
program to attempt to make the cell heights on this face be of uniform height.

• The third form of input in columns 24-35 is listed as "n-i-stations." The use of
quotes around that datum is questionable, since that character-string as is should
never be used. In place of the "n" a number from 2 to 9 should be substituted. In
place of the "i" an index ("j" or "k" or "l") should be substituted. For certain
problems the user might require cell heights on a face which are controlled, but
are not uniform. 3DGRAPE/AL allows the specification of cell heights which are
invariant with respect to one index but are varying as a piecewise continuous lin-
ear function of the other index. This form of input allows that. The piecewise
continuous linear function is defined by giving the desired cell height at several
values of the index, including its end points. The number in place of the "n" is the
number of points at which a value for the cell height is to be given. The index
substituted for the "i" is the index at values of which cell heights are to be given.
For example, "4-k-stations" means that at k equals 1, at k equals its maximum

42

value, and at two intermediate values of k, cell heights will be given. The
required cell heights between those places will be found by linear interpolation.

• Lastly, the data in columns 24-35 may be "read-each-pt". This gives the user total
flexibility in setting the required cell heights. From some other source, such as a
small program he has written just for this purpose, the user supplies one floating
point number per point on the surface, giving the required heights of cells on the
surface. The points and cells are ordered in the standard Fortran way, with the
first subscript varying fastest. The cell heights should be a smoothly varying
function over the boundary face. The user is responsible for making them so. If
they are discontinuous, problems will result. These data are supplied in input
file12. See the description of it in a subsequent section.
Control should never be activated on a face which has coincident points. Where
points are coincident, certain derivatives are undefined. The calculation of the
S&S RHS terms requires all derivatives of first and second order. But for an error
trap, division by zero would result.

A tip --> Realize that you don't have to use control terms everywhere; just use them on
those boundary surfaces where you really care about the cell height. Let the elliptic
method supply them elsewhere. This will simplify things and contribute to the
robustness of the solution.

Another tip --> As you turn the control terms on there is a "game plan" you might want
to follow. First, for each face having control terms activated, calculate the physical
distance from a typical point on that face to its correspondent point the opposite face.
That distance should then be divided by the number of intervals on the line connecting
those points, yielding what would be the spacing on that line if that spacing was uniform.
The user should compare that uniform spacing to the spacing being requested. For the
first try, the requested spacing should be between one-half and one-fifth of the uniform
spacing. Once convergence has been achieved, if you want smaller spacing at the wall
you can then reduce the requested spacing in increments. Just how much it can be
reduced is dependent on both the problem and the precision of your machine, and is
impossible to predict generally. The symptom of not working, of course, is that the
iterative grid-generation process will not converge. These multiple runs can either be
repeated restarts, or each can start from initial conditions, at your discretion.

One more tip --> Consider the sizes of the grid cells on the boundary faces where
control is activated. Divide the greatest dimension of any cell on the surface by the
height being requested. It is recommended that that aspect ratio not be less than one,
i.e., cells on the wall should not be taller than they are wide. For the first try, as in the
preceding paragraph, that ratio should be no larger than about 5. Once that has worked
you may increase that ratio in increments, by reducing the normal distance given in
columns 24-35. Grids have been generated with aspect ratios as large as 10,000:1.

When control on a face is activated, 3DGRAPE/AL will attempt to make the grid cells
immediately adjacent to that face conform to the required cell height and skewness. With
distance from the face, into the interior of the block, control of height and skewness
decays. Thus in the middle of the block the grid is essentially uncontrolled. That decay-
ing control allows the distance between points on lines normal to the face to increase in a
quasi-exponential manner with distance from the face. But how fast does that control
decay with distance inward? There is a parameter, called abc, which influences the rate

43

of decay. The default value for that parameter is 0.45. The user may override that default
by placing a floating-point number in columns 37-39. A larger number, such as 0.60 or
0.70, will cause the control to decay more rapidly, and will make the grid-generation
convergence more stable. Decreasing that parameter to values such as 0.40 or 0.35 will
cause the control to be propagated farther into the field, at the expense of decreasing the
stability of the grid-generation convergence.

The "angs" input datum, in columns 59-70, specifies whether the grid lines intersecting
the boundary surface are to be locally orthogonal, or not, and if not, then by just how
much and in what way. There are five acceptable values. The first is "keep-default".
This causes the program to attempt to make all the lines which intersect the boundary
surfaces to do so orthogonally.

The second acceptable value is "default+edge". This is the paradigm which replaces the
"lightening/tightening" feature in the earlier version of the code. It means that the
program will attempt to make the lines intersect the boundary surface in a locally
orthogonal manner everywhere except near a specified coordinate line (or lines) running
across the surface. There it will bend the grid lines toward or away from the specified
line in a manner which eases the grid over the discontinuity. It is expected that the user
will use this in instances where the physical model being gridded has a sharp corner run-
ning across a surface. An example would be a cylindrical grid wrapping around an air-
craft fuselage which has a strake.

The third and fourth acceptable values make reference to the fact that when a grid line
intersects a boundary surface, to specify its orientation requires two data. Intersecting at
every point on a grid boundary surface are two surface coordinate lines. There are two
indices running on the surface, with the remaining index fixed on the surface. One
running index varies along one of the coordinate lines, and the other running index varies
along the other coordinate line. The six faces of the computational cube are arbitrarily
given numbers, as shown in the following table. For purposes of this input datum we
order the indices alphabetically, also shown:

Face number: Fixed index: First running
index:

Second running
index:

1 j=1 k l
2 j=jmax k l
3 k=1 j l
4 k=kmax j l
5 l=1 j k
6 l=lmax j k

Table 7. Face Numbers and Indices

When "def-1-read-2" is given in columns 59-70 the angle that the line intersecting the
surface makes with the first coordinate line (along which varies the first running index) is
required to be 90˚, while the angle the line makes with the other coordinate line (along
which varies the second running index) is read in from file12. When "read-1-def-2" is
given in columns 59-70 the angle that the line intersecting the surface makes with the first
coordinate line (along which varies the first running index) is read in from file12, while
the angle the line makes with the other coordinate line (along which varies the second
running index) is required to be 90˚.

44

The fifth acceptable value in columns 59-70 is "read-each-pt". When this is chosen, the
angles with respect to both the first and second coordinate lines on the boundary surface
are read from file12.

The "norm/sect" line

Line Column Datum
 no.: nos: type: Description:

1 1-10 st "norm/sect="

1 11-13 i value of the index locating first point

1 14 st "-"

1 15-26 f cell height at first point

1 27 st "-"

1 28-30 i value of the index locating second point

1 31 st "-"

1 32-43 f cell height at second point

1 44 st "-"

1 45-47 i value of the index locating third point

1 48 st "-"

1 49-60 f cell height at third point

norm/sect=001- 3. -011- 6.3 -020- 37.3
123456789012345678901234567890123456789012345678901234567890
 111111111122222222223333333333444444444455555555556

Whether there are other lines of input describing the face is dependent upon what values
appear on the "face" line. The "norm/sect" line (or lines) should be present only if "n-i-
stations" is chosen for columns 24-35 on the "face" line. It should immediately follow
the "face" line, giving the values for cell height which make up the piecewise linear
function. There may be up to three of these lines, allowing up to nine stations across a
face. Subsequent of these lines have exactly the same format as the first.

The first type of "edges" line

Line Column Datum
 no.: nos: type: Description:

45

1-2 c/i "no", or the number of values of the first index at which
there is an edge along which the second index runs

3 st "-"

4 c the first running index

5-11 st "-edges-"

12-13 c/i "no", or the number of values of the second index at which
there is an edge along which the first index runs

14 st "-"

15 c the second running index

16-21 st "-edges-"

22-28 st "-nramp="

29-31 c/i "kdf" or the number of points over which the edge
treatment is to be ramped

no-j-edges-10-k-edges
no-j-edges-10-k-edges-nramp=kdf
no-j-edges-10-k-edges-nramp=005
1234567890123456789012345678901
 1111111111222222222233

Whether or not this line should be present depends upon what is given on the "face" line.
It should be present only if columns 59-70 of the face line contain "default+edge".
Above, the concept of sharp edges in the geometry being coincident with surface grid
lines was introduced. If that is the case, and the special treatment for it is to be employed,
this line must appear. It tells the program how many edges being coincident with each of
the two families of surface coordinate lines there are.

Each of the example lines, immediately above, describe edges running across a face
numbered 5 or 6. We know that because the running indices on that face are given as "j"
and "k" (see the preceding table on face numbers and indices). The example input data
record tells us that there are no values of j at which there is an edge having k running
along its entire length. It also tells us that there are ten values of k at which there is an
edge having j running along its entire length.

The last datum on this line, nramp, in columns 29-31, is the number of cells to each side
of the sharp edge over which the special treatment is applied. It is "ramped up" from
none to maximum right at the edge. The default value here, 5, will be used if "kdf,"
meaning "keep default" is entered. Other positive integers can be used instead.

The second type of "edges" line

Line Column Datum
 no.: nos: type: Description:

46

1-9 st "edges-at-"

10 c the running index referred to in the preceding "edges" line

11 st "="

12-14 i a value of the index at a constant value of which the edge
is

15 st "-"

16-18 i a value of the index at a constant value of which the edge
is

19 st "-"

20-22 i a value of the index at a constant value of which the edge
is

...and continuing across the line in the obvious way as needed

edges-at-k=001-007-017-044-065-176-280-335-399-401
12345678901234567890123456789012345678901234567890
 11111111112222222222333333333344444444445

This line, like the previous (first type of) edge line, should appear only if columns 59-70
of the face line contains "default+edge". There should be one of these lines for each of
the two indices which has edges, as described in the previous (first type of) edge line. In
other words, the edge treatment can be applied along one index direction, or in both index
directions; corresponding to that, there should be one or two of these lines. The example
of the previous (first type of) edge line showed no edge treatments along lines having
fixed j, and ten edge treatments along lines having fixed k. There are, in this example, 10
such lines of fixed k, at the given values of k, with j varying along those lines.

Summarizing now, there is an outside loop on the block number, and within that there is
an intermediate loop on the face number. For each of the six faces, in numerical order,
there must be a "face" line. Then, depending on whether or not they are called for in the
"face" line, there may be "norm/sect" line(s) and the two types of "edge" lines. At this
point all of the data pertaining to the face (as distinct from the sections into which it may
be divided) have been read. It is time to go into the innermost loop on section number for
each face. Typically, each face is one section. The ability to divide a face into multiple
sections is rarely used, and so in what follows "section" can usually be thought of as
equivalent to "face." However, when multiple sections are needed, that capability is
available and very important.

It is for purposes of determining the X,Y,Z locations of the points on the boundary faces
of the block that faces can be divided into sections. A face can be divided into as many
as ten sections. There are eight different boundary treatments 3DGRAPE/AL offers for
locating boundary points, and any of those treatments may be applied to each section.

The preceding input lines were given in the order in which they appear in the input file.
But here ends any semblance of such order, since the boundary treatments listed below
may be applied to any section of any face.

47

The following specifications for boundary treatment of sections of faces all include the
range of indices to which those treatments apply. It is the user's responsibility to check
those ranges to make sure that they add up to treatment of the entire face. It would be
quite possible to divide a face into sections by index limits and leave holes untreated or
have overlapping treatments. Overlapping treatments are inelegant, but rarely cause
problems. Leaving holes untreated, however, should be avoided.

A closely related problem is treating the edges of the block, each of which is the
intersection of two faces. Here again they might be treated once, by one of the two inter-
secting faces, twice, by both of the two intersecting faces, or they might be not treated at
all. Redundant treatment is clumsy, but not a fatal error. When there are such redundan-
cies, the treatment associated with the face having the highest face number will take
precedence. But failing to treat an edge in any way will be a sure cause of failure. A
checking procedure has been added to the code which checks for nonexistent or redun-
dant treatment of edges and corners, and will give warnings or error messages if they are
encountered.

Immediately following the input(s) pertaining to each face there should follow one of the
following boundary treatment inputs for each section on the face, with no intervening
blank lines. The ordering of the sections of each face is irrelevant.

The "read-in-fixed" line

Line Column Datum
 no.: nos: type: Description:

1-18 st "read-in-fixed-xyz-"

19 c first index on the face: "j" or "k"

20-25 st "-from-"

26-28 i starting value of first index

29-32 st "-to-"

33-35 i ending value of first index

36 st "-"

37 c second index on the face: "k" or "l"

38-43 st "-from-"

44-46 i starting value of second index

47-50 st "-to-"

51-53 i ending value of second index

read-in-fixed-xyz-j-from-001-to-025-k-from-001-to-025
12345678901234567890123456789012345678901234567890123
 11111111112222222222333333333344444444445555

48

This treatment is used for inputting a fixed boundary surface, typically the shape or part
of the shape about which or inside of which the user desires to make a grid. In other
words, this treatment is used for the "body" of interest. As stated previously, these points
on this surface must be distributed properly by some other device prior to input here. The
points on this surface must be distributed with two running indices, as is typical of any
surface mapping into the side of a computational cube. Those X,Y,Z data are not actually
read from this file, file10. Instead, upon reading the "read-in-fixed" input line,
3DGRAPE/AL looks to file11 from which it actually reads the data. File11 is described
in a subsequent section. After reading X,Y,Z data for this section of this face from file11
the program returns to file10 and continues reading.

The "plane-normal-to" lines

Line Column Datum
 no.: nos: type: Description:

1 1-16 st "plane-normal-to-"

1 17 c axis to which perpendicular: "x" or "y" or "z"

1 18-26 st "-axis-at-"

1 27 c axis to which perpendicular: "x" or "y" or "z"

1 28 st "="

1 29-40 f location on axis

1 41 st "-"

1 42 c first index on the face: "j" or "k"

1 43-48 st "-from-"

1 49-51 i starting value of first index

1 52-55 st "-to-"

1 56-58 i ending value of first index

1 59 st "-"

1 60 c second index on the face: "k" or "l"

1 61-66 st "-from-"

1 67-69 i starting value of second index

1 70 st "-"

2 1-6 st "...to-"

49

2 7-9 i ending value of second index

2 10-19 st "-ext/proj="

2 20-31 f the extrapolate/project parameter

2 32-47 st "-initial-point=("

2 48-59 f the value of the first coordinate at the initialization point

2 60 st ","

3 1-3 st "..."

3 4-15 f the value of the second coordinate at the initialization
point

3 16 st ")"

plane-normal-to-y-axis-at-y= 17.98 -j-from-001-to-025-k-from-001-
...to-025-ext/proj= 0.0 -initial-point=(4.0 ,
... -2.5)
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on a
plane normal to the indicated axis, at the indicated value on that axis. The distribution of
points on that plane will be found by extrapolating from the elliptic grid solution in the
interior of the block.

There are two different algorithms used for extrapolating to the plane from points in the
interior. The first is a straight drop, from the neighboring point in the interior directly to
the plane. This is the most stable, and is recommended for most applications. This type
of extrapolation is selected by entering 0.0 in the "ext/proj" field, in columns 20-31 of the
second line. The second algorithm extrapolates from three points in the interior by the
use of a parabola. This method is specially designed to try and bring the point into the
plane normally, to reduce the tendency for the method to go unstable. This method
should be used only when an adjacent side boundary face does not intersect this face
normally, and the user wishes to make this extrapolation more sensitive to the adjacent
boundary shape. This type of extrapolation is selected by entering 1.0 in the "ext/proj"
field, in columns 20-31 of the second line. The user can use a blending of the two
methods by entering a number between 0.0 and 1.0 in this field.

Initially, all the points in this section are put at one point somewhere on the plane. With
successive iterations the points spread out and go to where they should be. But that initial
point could be anywhere on the plane, which is infinitely large. The user supplies the
location of the initial point. Of the three coordinates X,Y,Z, one is constant on the plane
and is specified on the first line. The other two coordinates, in alphabetical order, are
given by the user in columns 48-59 on the second line and columns 4-15 on the third line.
In this example, the plane is normal to the y axis at y=17.98, and therefore the user gives
the X and Z coordinates of the initial point on the second and third lines as 4.0 and -2.5.

50

A tip --> The fact that points on the plane are initialized to the one initial point is one
reason why the grid, when plotted after zero iterations (i.e., when set to the initial
conditions) sometimes looks weird. But most of that weirdness goes away after the first
few iterations.

The "cylinder-about" lines

Line Column Datum
 no.: nos: type: Description:

1 1-15 st "cylinder-about-"

1 16 c name of axis: "x" or "y" or "z"

1 17-27 st "-axis-from-"

1 28 c name of axis: "x" or "y" or "z"

1 29 st "="

1 30-41 f starting value on axis

1 42-45 st "-to-"

1 46 c name of axis: "x" or "y" or "z"

1 47 st "="

1 48-59 f ending value on axis

1 60 st "="

1 61 c name of index along cylinder: "j" or "k" or "l"

2 62-68 st "-along-"

2 1-13 st "-axis-from-"

2 14-16 i starting value of index along

2 17-20 st "-to-"

2 21-23 i ending value of index along

2 24 st "="

2 25 c name of index along cylinder: "j" or "k" or "l"

2 26-38 st "-around-from-"

2 39-41 i starting value of index along

51

2 42-45 st "-to-"

2 46-48 i starting value of index around

2 49-60 st "-with-angle="

3 1-3 st "..."

3 4-15 f starting value of angle around (in degrees)

3 16-25 st "-to-angle="

3 26-37 f ending value of angle around (in degrees)

3 38-45 st "-radius="

3 46-57 i radius of cylinder

3 58-67 st "-ext/proj="

4 1-3 st "..."

4 4-15 f the extrapolate/project parameter

cylinder-about-x-axis-from-x=100. -to-x= 750. -j-along-
...axis-from-002-to-033-l-around-from-002-to-021-with-angle=
...-90. -to-angle= +90. -radius= 500. -ext/proj=
... 0.0
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on the
surface of a cylinder. That cylinder must have its axis coincident with one of the
coordinate axes. The program needs to know the limits of the cylinder in the axial
direction. Note that the "starting value" on the axis should correspond to the starting
value of the index running along the axis, and the "ending value" on the axis should cor-
respond to the ending value of that index. The index limits should be given in increasing
fashion, i.e., the ending limit of the index should be greater than the starting value. But
the physical problem may demand that the values on the axis corresponding to those
indices be given in decreasing fashion, i.e., the ending value on the axis may be smaller
than its starting value. That is acceptable.

The cylinder need not displace the entire 360˚. For example, in an aerodynamic
application which assumes no yaw, the grid typically covers only one side, requiring a
cylindrical section of 180˚. Thus starting and ending values of the angle around the
cylinder are input. Those angles are defined according to the increasing index convention
for right-handed coordinate systems, and a decreasing index convention for left-handed
systems. An alternate explanation of that angle definition is as follows. The cylinder's
axis is one of the coordinate axes. The user should imagine his eye far out on the positive
end of that axis, looking back toward the origin at the entire grid. The user will then be
looking at a coordinate plane in which lie the two other axes. That plane should be
rotated, and the entire grid with it, about the cylindrical axis until the positive end of one
of those other two axes points to the right and the other positive end points up. The user

52

can then imagine a conventional 2-D polar coordinate system on that plane, with the
angle equal to zero on the right and increasing in counterclockwise fashion. It is with
respect to that angle that the starting and ending angles entered in columns 4-15 and
26-37 of the third input line are measured.

The axis values and the angles are used only for locating the initial conditions. Thus
great precision is not required.

Note that the starting and ending values of the index running around the axis should be
given in increasing order, i.e., the ending value must be greater than the starting value.
But the starting and ending values of the angle need not be so ordered; the physical
problem may require that they be ordered backwards. That is acceptable.

As with the plane-normal-to, above, there are two algorithms available to extrapolate to
the cylinder from points inside of it. The first, selected by using 0.0 for "ext/proj=", does
a simple projection from the point inside to the nearest point on the cylinder, i.e., to a
point at the same axial station, the same angle around the axis, and a greater radius.
Using 1.0 for "ext/proj=" causes the point to be extrapolated linearly from two points
inside of the cylinder. The user can blend the two treatments by using a value between
0.0 and 1.0. Use of 0.0 is recommended.

The "ellipsoid" line

Line Column Datum
 no.: nos: type: Description:
1 1-17 st "ellipsoid-x-cent="

1 18-29 f x-coordinate of center of ellipsoid

1 30-37 st "-y-cent="

1 38-49 f y-coordinate of center of ellipsoid

1 50-57 st "-z-cent="

1 58-69 f z-coordinate of center of ellipsoid

2 1-10 st "...x-semi="

2 11-22 f length of semi-span in x-direction

2 23-30 st "-y-semi="

2 31-42 f length of semi-span in y-direction

2 43-50 st "-z-semi="

2 51-62 f length of semi-span in z-direction

2 63 st "-"

2 64 c name of first index: "j" or "k"

2 65-70 st "-from-"

53

3 1-3 st "..."

3 4-6 i starting value of first index

3 7-10 st "-to-"

3 11-13 i ending value of first index

3 14 st "-"

3 15 c name of second index: "k" or "l"

3 16-21 st "-from-"

3 22-24 i starting value of second index

3 25-28 st "-to-"

3 29-31 i ending value of the second index

3 32-55 st "-latitudinal-angle-from-"

3 56-67 f starting latitudinal angle

3 68 st "-"

4 1-6 st "...to-"

4 7-18 f ending latitudinal angle

4 19-30 st "-polar-axis="

4 31 c "x", "y", or "z", the polar axis

4 32-38 st "-index="

4 39 c "j", "k", or "l", the index which goes along the axis

4 40-64 st "-longitudinal-angle-from-"

5 1-3 st "..."

5 4-15 f starting longitudinal angle

5 16-19 st "-to-"

5 20-31 f ending longitudinal angle

5 32-41 st "-ext/proj="

5 42-53 f the extrapolate/project parameter

54

ellipsoid-x-cent=100. -y-cent= 0. -z-cent= 0.
...x-semi= 500. -y-semi= 500. -z-semi= 500. -j-from-
...002-to-018-l-from-002-to-021-latitudinal-angle-from-123456789.12-
...to-123456789.12-polar-axis=x-index=j-longitudinal-angle-from-
...123456789.12-to-123456789.12-ext/proj=123456789.12
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

The points on a face, or on a section of a face, may be constrained to lie on the surface of
an ellipsoid. A sphere, of course, is a special case of an ellipsoid. The center of the
ellipsoid may lie anywhere, and that location is given on the first line. The ellipsoid
must, however, have its semi-axes parallel with the coordinate axes. The shape of the
ellipsoid is defined by the length of the semi-axes. The length of the semi-axis in the x-
direction, i.e., the distance from the center to the surface measured in the x-direction, is
given in columns 11-22 of the second line. The other semi-axes are given similarly.

We will initialize the points on this ellipsoid as lines of latitude and longitude. For
purposes of initialization the user designates which axis is to be the polar axis, and the
range of latitudinal angles (north and south of the equator on the earth). Positive angles
are toward the positive end of the given polar axis, zero is at the equator, and negative
angles are toward the negative end of the given polar axis. Thus these angles must be
between +90 and -90 degrees. We also need to know which index goes in the latitudinal
direction. This index goes from the "from" latitudinal angle to the "to" latitudinal angle.
Thus by swapping these angles the index can be made to run the opposite way.

We also need to know the range of longitudinal angles (east and west on the earth).
Those angles are defined according to the increasing index convention for right-handed
coordinate systems, and a decreasing index convention for left-handed coordinate
systems. This is the same way as the angle in the cylindrical face treatment. The user
should imagine his eye far out on the positive end of the polar axis, looking back toward
the entire grid. The user will then be looking at a coordinate plane in which lie the two
other axes. That plane should be rotated, and the entire grid with it, about the polar axis
until the positive end of one of those other two axes points to the right and the other posi-
tive end points up. The user can then imagine a conventional 2-D polar coordinate sys-
tem on that plane, with the longitudinal angle equal to zero on the right and increasing in
counterclockwise fashion.

For example, suppose that in a right-handed coordinate system the Y axis is given as the
polar axis. This leaves the X and Z axes in the plane. Rotating them as described above
results in the positive end of the X axis being to the right and the Z axis pointing upward.
Thus, in this case, the longitudinal angle would be measured from the X axis around
counterclockwise, encountering the positive end of the Z axis at 90 degrees.

Because we know which face number this is we know which two indices run over it.
Thus, knowing which index runs in the latitudinal direction, we, by process of elimi-
nation, know which index runs in the longitudinal direction. That index will be equal to
its minimum on this section at the "from" longitudinal angle, and at its maximum at the
"to" longitudinal angle. As above, this index may be caused to run the other way by
swapping the "from" and "to" angles.

The user should realize that all the foregoing about locating the points at lines of constant
latitude and longitude applies only to the initialization. The points are free to move
around during the iteration process, according to the emerging solution in the interior of
the block.

55

As with the plane-normal-to, above, there are two algorithms available to extrapolate to
the ellipsoid from points inside of it. The first, selected by using 0.0 for "ext/proj=", does
a simple projection from the point inside to the nearest point on the ellipsoid. Using 1.0
for "ext/proj=" causes the point to be extrapolated linearly from two points inside of the
ellipsoid. The user can blend the two treatments by using a value between 0.0 and 1.0.
Use of 0.0 is recommended.

The "collapsed-to-an-axis" lines

Line Column Datum
 no.: nos: type: Description:

1 1-13 st "collapsed-to-"

1 14 c name of the axis: "x" or "y" or "z"

1 15-25 st "-axis-from-"

1 26 c name of the axis: "x" or "y" or "z"

1 27 st "="

1 28-39 f starting value on the axis

1 40-43 st "-to-"

1 44 c name of the axis: "x" or "y" or "z"

1 45 st "="

1 46-57 f ending value on the axis

1 58 st "-"

1 59 c name of index along axis: "j" or "k" or "l"

1 60-66 st "-along-"

2 1-13 st "...axis-from-"

2 14-16 i starting value of the index along axis

2 17-20 st "-to-"

2 21-23 i ending value of the index along axis

2 24 st "-"

2 25 c name of index around axis: "j" or "k" or "l"

2 26-38 st "-around-from-"

56

2 39-41 i starting value of index around axis

2 42-45 st "-to-"

2 46-48 i ending value of index around axis

2 49-58 st "-ext/proj="

2 59-70 f the extrapolate/project parameter

collapsed-to-x-axis-from-x= 0. -to-x= -400. -k-along-
...axis-from-002-to-031-l-around-from-001-to-022-ext/proj= 0.0
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

Certain topologies, such as spherical or cylindrical grids, give rise to the need for a face,
or a section of a face, to be collapsed to an axis. This input option allows that treatment.
Note that the points on the axis are found by extrapolating to the axis, and so the
distribution of points on the axis is that which results from the elliptic solution. Elliptic
grids tend to be uniformly distributed, absent the effect of control terms. Thus the
distribution of points on faces collapsed to axes tends to be uniform.

The axis values given here are used only for locating the initial conditions. Thus great
precision is not required.

The starting and ending values of the indices should be given in increasing order, i.e., the
ending values should be larger than the starting values. This sometimes means that the
corresponding starting and ending values on the axis must be given in decreasing order,
i.e., with the ending values less then the starting values. That is acceptable.

There are two different algorithms used for extrapolating to the axis from points in the
interior. The first is a straight drop, from the neighboring point in the interior directly to
the axis. This is the most stable, and is recommended for most applications. This type of
extrapolation is selected by entering 0.0 in the "ext/proj" field. The second algorithm
extrapolates from three points in the interior by the use of a parabola. This method is
specially designed to try and reduce the tendency for the method to go unstable. This
method should be used only when an adjacent side boundary face does not intersect this
face normally, and the user wishes to make this extrapolation more sensitive to the
adjacent boundary shape. This type of extrapolation is selected by entering 1.0 in the
"ext/proj" field. The user can use a blending of the two methods by entering a number
between 0.0 and 1.0 in this field.

As faces collapsed to axes have many coincident points, control terms should not be
activated thereon.

The "collapsed-to-a-point" lines

Line Column Datum
 no.: nos: type: Description:

1 1-21 st "collapsed-to-point-x="

1 22-33 f x-coordinate of the point

57

1 34-36 st "-y="

1 37-48 f y-coordinate of the point

1 49-51 st "-z="

1 52-63 f z-coordinate of the point

1 64-69 st "-with-"

2 1-3 st "..."

2 4 c name of first index: "j" or "k"

2 5-10 st "-from-"

2 11-13 i starting value of first index

2 14-17 st "-to-"

2 18-20 i ending value of first index

2 21 st "-"

2 22 c name of second index: "k" or "l"

2 23-28 st "-from-"

2 28-31 i starting value of second index

2 32-35 st "-to-"

2 36-38 i ending value of second index

collapsed-to-point-x= 750. -y= 0. -z= 0. -with-
...j-from-001-to-001-l-from-001-to-022
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

Because all points on this section are coincident, control must not be activated here.

The "match-to-face" lines

Line Column Datum
 no.: nos: type: Description:

1 1-14 st "match-to-face-"

1 15 i face number of other face

58

1 16-22 st "-block-"

1 23-24 i block number of other face

1 25-30 st "-this-"

1 31 c name of first index on this face: "j" or "k"

1 32-37 st "-from-"

1 38-40 i starting value of first index on this face

1 41-44 st "-to-"

1 45-47 i ending value of first index on this face

1 48-53 st "-this-"

1 54 c name of second index on this face: "k" or "l"

1 55-60 st "-from-"

1 61-63 i starting value of second index on this face

1 64-67 st "-to-"

1 68-70 i ending value of second index on this face

2 1-9 st "...-that-"

2 10 c first index on that face: "j" or "k" or "l"

2 11-16 st "-from-"

2 17-19 i starting value of first index on that face

2 20-23 st "-to-"

2 24-26 i ending value of first index on that face

2 27-32 st "-that-"

2 33 c second index on that face: "j" or "k" or "l"

2 34-39 st "-from-"

2 40-42 i starting value of second index on that face

2 43-46 st "-to-"

2 47-49 i ending value of second index on that face

2 50-64 st ""

59

3 1-4 st "...("

3 5-16 f X coordinate of the initial point

3 17 st ","

3 18-29 f Y coordinate of the initial point

3 30 st ","

3 31-42 f Z coordinate of the initial point

3 43 st ")"

match-to-face-1-block-02-this-k-from-002-to-031-this-l-from-001-to-022
...-that-k-from-002-to-031-that-l-from-001-to-022-initial-point=
...(3. , 5. , -2.7)
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

This boundary treatment allows this section of this face to be matched to (1) any other
section of this face, or (2) any section of another face of this block, or (3) any section of
any face of any other block. That match will produce a block-to-block type boundary
where the surface floats with the solution of the grid-generation equations. Grid line
slope and spacing will be continuous across this surface. Note that this surface is double-
stored, i.e., it exists in memory identically as part of both coincident faces.

The range of indices defining "this" section must match with the range of indices defining
"that" section. Note that while the first index on "this" face must be j or k and its second
index must be k or l, any index could be the first index on "that" face and any other index
could be its second index. The starting and ending values on "this" face must be given in
increasing fashion, i.e., the ending values must be greater than the starting values. But
the corresponding indices on "that" face may run in whatever direction is appropriate. A
checking procedure has been introduced which checks the match-to-face data for
consistency. It prints warnings and error messages if appropriate. Note that the
information given here must essentially be given twice—once here in these input lines
describing "this" face of "this" block, and also in the input lines describing "that" face of
"that" block.

As with the plane-normal-to boundary treatment, there is an initial point given here. All
the points on this face will be initialized to this value, which looks very strange when
plotted. This condition will be corrected after the first iteration. Note that this initial
point requires all three coordinates.

The "freeze-at-restart" line

Line Column Datum
 no.: nos: type: Description:

1-18 st "freeze-at-restart-"

19 c first running index on this face

60

20-25 st "-from-"

26-28 i starting value of first running index

29-32 st "-to-"

33-35 i ending value of first running index

36 st "-"

37 c second running index on this face

38-43 st "-from-"

44-46 i starting value of second running index

47-50 st "-to-"

51-53 i ending value of second running index

freeze-at-restart-j-from-001-to-025-k-from-001-to-025
12345678901234567890123456789012345678901234567890123
 11111111112222222222333333333344444444445555

This new boundary treatment may be used at the time of a restart, to freeze all the points
on a boundary surface. It is intended for use on sections which in previous runs were
floating -- on a plane, cylinder, ellipsoid, or axis.

FILE11 – BODY DEFINITION ARRAYS

It was stated in the previous section that during its input phase 3DGRAPE/AL reads
through file10 until it encounters a "read-in-fixed" input line. At that point it suspends
reading from file10 and begins reading the fixed surface points from file11. When it is
finished reading those X,Y,Z coordinates from file11 it returns to reading from file10.
This cycle will be repeated as many times as there are "read-in-fixed" input lines. Thus
file11 must contain X,Y,Z coordinates of as many fixed surfaces as there are "read-in-
fixed" input lines.

For each read-in-fixed-surface file11 must contain:

• a header line introducing the x-coordinates,

• the x-coordinates,

• a header line introducing the y-coordinates,

• the y-coordinates,

• a header line introducing the z-coordinates, and

• the z-coordinates.

No intervening blank lines are allowed. This cycle of six things should be repeated for
each fixed surface.

61

The header lines introducing the coordinates are of the form:

Line Column Datum
 no.: nos: type: Description:

1-9 st "complete-"

10 c name of coordinate: "x" or "y" or "z"

11-23 st "-for-section-"

24-25 i section number

26-34 st "-of-face-"

35 i face number

36-45 st "-of-block-"

46-47 i block number

48-49 st "-f"

50-51 c field width, either "12" or "20"

complete-x-for-section-01-of-face-3-of-block-01
complete-x-for-section-01-of-face-3-of-block-01-f12
complete-x-for-section-01-of-face-3-of-block-01-f20
123456789012345678901234567890123456789012345678901
 111111111122222222223333333333444444444455

As described immediately below, the X,Y,Z, data in this file may be in either 6f12.0
format or 4f20.0 format. Blanks or "-f12" on the end of the first header line in the file
select 6f12.0;"-f20" on the end of the first header line in the file selects 4f20.0 The entire
file must use the same one of those two formats, so this selection applies to the entire file.
The contents of columns beyond 47 are optional on the first of these header lines in this
file, and ignored on all subsequent header lines in this file.

The actual X- or Y- or Z-coordinates begin on the line immediately following their
respective header line. As with all F formats used for input in Fortran, the placement of
decimal points in the input record overrides the placement of decimal points as indicated
on the format, and so the ".0" in the format is irrelevant. The selected format is repeated
for subsequent lines as many times as needed. The points should be ordered with the first
running subscript varying most rapidly as the "inner loop," and the second running
subscript varying most slowly as the "outer loop."

FILE12 - CELL HEIGHTS AND ANGLES AT BOUNDARY SURFACES

Whenever called for by the "normal=" and/or "angs=" fields in the "face" lines, the
program will suspend reading from file10 and begin reading from file12. When finished

62

reading those data for that face from file12, it returns to reading from file10. The data in
file12 appear in whatever order they are called for in the various "face" lines in file10.

Line Column Datum
 no.: nos: type: Description:

1-33 st "complete-normal-heights-for-face-"

34 i face number

35-44 st "-of-block-"

45-46 i block number

48-49 st "-f"

50-51 c field width, either "12" or "20"

complete-normal-heights-for-face-3-of-block-08
complete-normal-heights-for-face-3-of-block-08-f12
complete-normal-heights-for-face-3-of-block-08-f20
12345678901234567890123456789012345678901234567890
 11111111112222222222333333333344444444445

Line Column Datum
 no.: nos: type: Description:

1-30 st "complete-angles-wrt-subscript-"

31 i running subscript number, either 1 or 2

32-41 st "-for-face-"

42 i face number

43-52 st "-of-block-"

53-54 i block number

55-56 st "-f"

57-58 c field width, either "12" or "20"

63

complete-angles-wrt-subscript-1-for-face-3-of-block-08
complete-angles-wrt-subscript-2-for-face-3-of-block-08-f12
complete-angles-wrt-subscript-2-for-face-3-of-block-08-f20
1234567890123456789012345678901234567890123456789012345678
 1111111111222222222233333333334444444444555555555

The "normal-heights" header line is followed by the requested cell heights, in the user's
own units as used in the X,Y,Z. They are ordered as are the X,Y,Z in file11, with the
first running subscript varying most rapidly as the "inner loop," and the second running
subscript varying most slowly as the "outer loop." The format is either 6f12.0 or 4f20.0,
selected just as in file11.

The "angles" header line is followed by the requested angles, in degrees, with 90.0
meaning perpendicular, angles less than 90.0 tilting toward the end of the indicated
surface coordinate with lower running index values, and angles more than 90.0 tilting
toward the end of the indicated surface coordinate with higher running index values.
"Wrt" stands for "with respect to."

FILE13 – TO READ IN A GRID AND SMOOTH IT

This program has the ability to read in a grid generated elsewhere, smooth it, and write it
out again. With the graphical version of this program, such a grid could be read in,
looked at, and then smoothed or left un-altered.

File13 is the logical unit used for reading in this grid. The name of this file is read from
file19, described in a subsequent section. The grid file itself, file13, may be of any of the
same forms in which this program writes file14, its output grid. These forms are
described above, in the section called "the filename-14" line. This file to be read should
have been written by code being functionally equivalent to the pseudo-code shown in that
section.

FILE16 – CONTROL SCALARS FOR RE-START

As was said above, 3DGRAPE/AL has a restart capability. The user can let the grid
generator run a while, examine the resulting grid, change some things, and then run it
some more. The code allows the user to change many things at restart. The number of
blocks, the dimension sizes of the blocks, the "handedness" of the blocks, the data per-
taining to Cartesian vs. spherical topology, and whether or not control is activated on
each face are the only things which cannot be changed. This means that all the other
parameters originally given in file10 may be modified, the body shape given in file11 or
the distribution of points on it may be modified, etc.

If a run of 3DGRAPE/AL is to be restarted, the first requirement is that a restart file be
written as file15 by the first run; see the "write-for-restart" input line in file10, described
above. For the restart run, this same file is read in as file17.

As described above, in the section called, "THE FIRST TWO LINES," the first thing the
program does in any execution is to inquire about what type of run this is. For a restart
the user should enter "re-start". In this restart case, the program reads a file, using unit
16, which bears great resemblance to a file10. In fact, most users create their file16 by
copying their file10 and then suitably modifying it. The program will ask what filename
is to be used for the file16 input data. The user should enter that name.

64

The following table lists the input lines in file16. Where it says "just like in file10" it
does not mean that the line in file16 must be identical to the corresponding line in the
file10 used in the first run for this grid; it means that the user has all the options in
making up this line which are available for this line in any file10. However, in practice,
most users will cause most of these lines to be the same as the corresponding line in their
file10.

Line designation: Description:
The "run-comment" lines Just like in file10.
The "filename-17-input" line This is a new type of line, present only in file16. It simply

tells the program what filename is used for the restart file,
written as file15 by the previous run. Its format is:

filename-17-input=my_restart_file
12345678901234567890123456789012345
 11111111112222222222333333

The "heading" line This is a shortened version of the "number-of-blocks" line.

heading=kdf
heading=000
heading=054
heading=kdf-filename-18-views=my_picture_data
123456789012345678901234567890123456789012345
 111111111122222222223333333333444444

The "iterations" lines Just like in file10, except that:
• In restart runs the RHS types "S&S-initzero" and

"S&S-init-T&M" make no sense, because in a
restart the RHS are not being initialized.

• In restart runs coarse parts are forbidden
The "filename-11" line Just like in file10.
The "filename-14" line Just like in file10.
The "write-for-restart" line Just like in file10. However, you should realize that you

can make multiple, subsequent restart runs if you want. If
you don't want to do another restart after this one, be sure
to say "no". But if you do, be careful with the filenames.
In that case, make sure that you change the name of the
restart file to be created on this run, so that you don't
overstore the restart file you just read for this run.

The "omegpqr" line Just like in file10.
The "quality-check" line Just like in file10.
The "block-comment" line Just like in file10.
The "dimension" line This line must be removed. If anything on it changed,

chaos would result.
The "handedness" line This line must be removed. If anything on it changed,

chaos would result.
The "polar-axis" line This line must be removed. If anything on it changed,

chaos would result.

65

The "freezeblock" line Just like in file10.
The "face" line Just like in file10.
The "norm/sect" line Just like in file10.
The first type of "edges" line Just like in file10.
The second type of "edges"
line

Just like in file10.

The "read-in-fixed" line Just like in file10.
The "plane-normal-to" lines Just like in file10.
The "cylinder-about" lines Just like in file10.
The "ellipsoid" line Just like in file10.
The "collapsed-to-an-axis"
lines

Just like in file10.

The "collapsed-to-a-point"
lines

Just like in file10.

The "match-to-face" lines Just like in file10.
The "freeze-at-restart" line This option is available at restart, although it is not

available on a first run.

Table 8. List of Input Lines Used in File16 Input

FILE18 – INDICES OF SURFACES TO BE VIEWED

The batch (non-graphical) version of this code ignores file18. The graphical version,
however, reads file18 to find exactly what the user wants to look at when viewing the
grid. The graphical version of the code allows the user to choose between as many as
eight different views of the grid. As used here, the term "view" means a set of coordinate
surfaces (over which one index is fixed, and the other two vary) or portions thereof.
These coordinate surfaces can be taken from any or all of the blocks in a multiple-block
grid. Each surface can be colored with any of eight colors. The background is black,
unless all the surfaces are chosen to be black, in which case the background is white. The
number of surfaces per view is limited by a parameter set in params.h. As delivered, this
value is 50.

All of the data in file18 are read in 8i5 format. There is one "group" of data for each
view, with the groups appearing in sequence. Each group begins with a line having on it
one number: the number of surfaces in this view:

Line Column Datum
 no.: nos: type: Description:

1-5 i number of surfaces in this view.

 3
1234567890123456789012345678901234567890
 1111111111222222222233333333334

66

In this example, the line, the first line of a group, says that the group consists of three grid
surfaces.

The remainder of the group consists of one line of data for each surface in the view,
defining the surface:

Line Column Datum
 no.: nos: type: Description:

1-5 i Block number of this surface

6-10 i Minimum value of the first index, j, in this surface

11-15 i Maximum value of the first index, j, in this surface

16-20 i Minimum value of the second index, k, in this surface

21-25 i Maximum value of the second index, k, in this surface

26-30 i Minimum value of the third index, l, in this surface

31-35 i Maximum value of the third index, l, in this surface

36-40 i Color code for this surface, chosen from the Color Codes
table, shown below

 1 1 50 1 1 1 40 3
 1 1 50 30 30 1 40 3
 1 25 25 1 30 1 40 5
1234567890123456789012345678901234567890
 1111111111222222222233333333334

Suppose the example lines, above, were used for viewing a one-block grid having index
limits of 50 x 30 x 40. Then the first line describes a yellow surface where k is fixed at
its minimum value, 1, with j and k running over their full ranges. The second line
describes another yellow surface where k is fixed at its maximum value, 30, with j and k
running over their full ranges. The third line describes another surface, magenta in color,
where j is fixed at an intermediate value of 25, with k and l running over their full ranges.

Since each line of data after the first in each group represents a grid surface, and a grid
surface by definition has one index fixed, that line of data should have one minimum
index value equal to the maximum value of that same index. See k in the first and second
lines, and j in the third line. This rule can be violated at the user's discretion (e.g., for
drawing both upper and lower surfaces of a wing), but the user should realize that draw-
ing solid figures (as opposed to surfaces) tends to produce an impenetrable blob, and
takes the computer a long time to draw.

In a multiple-block grid surfaces from multiple blocks can be mixed in a view (in a
group).

67

Blank lines may appear in this file preceding the lines which give the number of surfaces
in each view. I.E., blank lines may appear between the groups of data. Using them
enhances readability of the file. Blank lines may not appear within the groups of data.

This file is read until terminated by:

• having read eight views (eight groups of data), or

• encountering an end of file, or

• reading a negative number for the number of surfaces in a view. This allows other
data, not currently in use, to be stored in the same file after the terminating nega-
tive number. Users have found this convenient.

Color code: Resulting color:
0 black

1 red

2 green

3 yellow

4 blue

5 magenta

6 cyan

7 white

Table 9. Color Codes

FILE19 – CONTROL SCALARS FOR SMOOTHING A GRID

The control scalars for reading in a grid to be smoothed are read from file 19, and are
similar to the data read from files 10 and 16.

Line Column Datum
 no.: nos: type: Description:

1-20 st "run-comment "

21-70 c free-field comment describing this run

run-comment Blah, blah, blah.
run-comment What this data is all about.
1234567890123456789012345678901234567890123456789012345678901234567890
 1111111111222222222233333333334444444444555555555566666666667

These two lines are just like in file10, above.

68

Line Column Datum
 no.: nos: type: Description:

1 1-11 st "iterations="

1 12-14 i the number of iterations in this part

1 15-23 st "-control="

1 24-25 c overriding global switch on control, either "ye" or "no"

iterations=100-control=no
iterations=100-control=ye
1234567890123456789012345
 1111111111222222

The data on this line are the same as described in file10.

Line Column Datum
 no.: nos: type: Description:

1-23 st "filename-13-grid-input="

24-38 n filename for input on unit 13

39-44 st "-form="

45-51 c "3dgrape" or "plot3ds" or "plot3dm" or "charact"

filename-13-grid-input=my_bumpy_grid -form=3dgrape
filename-13-grid-input=what_a_mess -form=plot3ds
filename-13-grid-input=I_should_smooth-form=plot3dm
filename-13-grid-input=this_rascal -form=charact
123456789012345678901234567890123456789012345678901
 111111111122222222223333333333444444444455

The data on this line are the same as described in file10.

Line Column Datum
 no.: nos: type: Description:

1-24 st "filename-14-grid-ouput="

69

25-39 n filename for output on unit 14

40-45 st "-form="

46-52 c "3dgrape" or "plot3ds" or "plot3dm" or "charact"

filename-14-grid-output=my_smooth_grid -form=3dgrape
filename-14-grid-output=a_joy_to_behold-form=plot3ds
filename-14-grid-output=what_a_great -form=plot3dm
filename-14-grid-output=program_this_is-form=charact
1234567890123456789012345678901234567890123456789012
 1111111111222222222233333333334444444444555

The data on this line are the same as described in file10.

Line Column Datum
 no.: nos: type: Description:

1-14 st "quality-check="

15-16 c "ye" or "no"

17-35 st "-filename-18-views="

36-50 n name of file for input as file18

quality-check=ye
quality-check=no-filename-18-views=my_picture_data
12345678901234567890123456789012345678901234567890
 11111111112222222222333333333344444444445

The data on this line are the same as described in file10.

OUTPUT

There are two principal forms of output from this program. The first is the "printout" file,
i.e., the text which is written to standard output. It consists primarily of

• a listing of the control scalar input (file10 or file16 or file19), with some com-
ments added about what the program is doing,

• a trace of the iteration count as the program runs,

• a convergence history for each block, and

• quality-check data, if called for.

70

The other principal output is file14, containing the finished grid. The various forms of
this file are described in the section on "The filename-14" line, above.

The program also, if called for, makes a restart file (file15) to be read (as file17) by the
program itself in the case of a restart. Since the user has no cause to examine this
unformatted file, its format is not documented here.

One might also consider the pictures on the screen drawn by the graphical version of this
code to be output. Furthermore, the plotting package can write screen-dump files of grid
pictures named plotit.01.rgb, plotit.02.rgb, etc., and screen-dump files of convergence
history plots named convhist.01, convhist.02, etc.

RUNNING THE GRAPHICAL USER INTERFACE

As was said above, when the program is run on a Silicon Graphics IRIS workstation it
can be linked in two different versions. One is batch and the other is with graphics. This
section will describe running the code in its graphics version.

A sample of the Graphical User Interface can be seen in the first grid figure, Figure 3a,
appearing in the following section on the example cases. Those figures are reduced to
grayscale in this manual, but liberal use is made of color in the actual program.

When the graphics opens there will be four windows on the screen. The big square one
on the left displays the grid. On the right are three small windows.

The top small window is titled TRANSFORMS. The user should realize that although no
axes are actually drawn, conceptually there are two different sets of axes here. One set is
the body's axes, which move with the object. If the grid is about an airplane those body
axes would be the pitch, roll, and yaw axes. The other set of axes is the screen axes,
which are fixed. The screen axes go right and left, up and down, and in and out (which is
zooming). This window's buttons give the user the ability to rotate the plotted object
about the body's axes, translate it along those axes, and translate it along the screen's
axes.

Once the use of the mouse and its buttons is understood, the rest is easy. In the
TRANSFORMS window the user first uses the middle mouse button to select what
operation is to be performed, i.e., to select which of the nine transforms is to be currently
active. To activate a certain transform, place the mouse cursor over that screen button
and click the middle mouse button. That screen button will then light up, signifying that
that transform is active.

Then, with the desired transform selected, push the right and left mouse buttons to
operate it. The right mouse button causes the transform to operate one way, and the left
mouse button causes it to operate the other way. These transforms work only when the
mouse cursor is somewhere in this window.

There is a default transform speed which is relative to the physical size of the object. But
that speed isn't always right. And so the user can vary the speeds of the transforms, a
different speed for each. Notice the little green triangles in each transform button. They
indicate the speed of that transform -- faster to the right and slower to the left. The user
moves them by moving the mouse to the right or left while actually doing the transform,
i.e., by sliding the mouse to the right or left while actually depressing either the right or
left mouse button.

71

The middle small window is titled CONTROLS. It offers variety of different control
actions. In this window, and in the one below it, the middle mouse button selects what
the user wants to do, and the right and left mouse buttons don't do anything.

The screen buttons in the CONTROLS window are described below:

Button: Function:
GO The program will automatically pause for in-depth graphical inspection

at the start and at the end of the run. In addition, as described below,
the user can pause the iterative process whenever he wants to. When
finished inspecting the user should hit this GO button to resume
iterating. Note that here, and throughout the other buttons, whenever a
button is not available it will be dimmed. For example, after pushing
GO the only button available is PAUSE.

PAUSE The user can pause the program anytime during the iterative process.
Just press and hold this button until the current iteration is finished.

EXIT What it says. There is a "do you really want to do this?" trap.

RESET It is possible, after many transform operations, to get lost. The user
either can't tell where he is in the grid, or the entire picture is off of the
screen and can't be found. This button resets the orientation of the
object to what it was at the start.

FAST / SLOW As described above, there is a speed setting for each of the transforms,
with the current speed settings illustrated by the little green triangles in
the TRANSFORMS window. This button cause all the triangles to
toggle together to either the right -- FAST -- or to the extreme left --
SLOW.

PERS / ORTH Toggle between perspective and orthographic projections. Some
zooming may be required to make the object the same size after
switching projections.

Z-BUFFER This invokes hidden-surface removal. Just push the button. The
program re-draws the current picture in hidden surface mode. Then hit
anywhere in the CONTROLS window to get it back into normal mode.

PIXSAVE This button causes the program to call the SGI utility "scrsave" to
dump a raster image of the screen to a file of the RGB type. This is
useful for making pictures and viewgraphs. Beware that in every run it
names the files "plotit.01.rgb", "plotit.02.rgb", etc. Therefore, if there
are files thusly named remaining from an earlier run they will be
overwritten.

CONV HIST This button causes the GUI to switch from plotting the grid to plotting
convergence histories.

Table 10. GUI Control Buttons

When in CONV HIST mode, for each block there is either one or two convergence
history plots: a plot showing maximum and average point movement vs. iteration count,
and if S&S RHS terms are used a plot showing maximum absolute value of the RHS
terms and maximum correction of RHS terms. These one or two plots are repeated for
each block, making a list of convergence history plots. The convergence history plot

72

window shows, along with a convergence history plot, four buttons. Pushing them has
the following effects:

Button: Function:
NEXT The next plot in the list will be shown.

PREVIOUS The previous plot in the list will be shown.

PIXSAVE A screen dump to a file will be performed.

RETURN Return to grid plotting mode.

Table 11. Screen Buttons in CONV HIST Mode

By hitting one of the buttons in the bottom small window titled SELECT VIEWS with
the middle mouse button the user selects between the different views which were pre-
defined in the file18 views file.

EXAMPLE CASES

Three basic example cases are included, plus two variations on the first, for a total of five
cases. They illustrate the use of many of the features of the code. Following is a table
which lists the files relating to the example cases. They are all ASCII text. This table
could be thought of as a continuation of Table 3, above.

File
number:

Sub-
directory:

File name: Data in this file:

160 box boxall.f10 Control scalars for the basic box case

161 box boxall.f11 X,Y,Z coordinates of points on the sides of the
box, having sinusoidal bumps. Used for all
the box cases.

162 box boxall.f18 Indices defining the grid surfaces to be viewed
when any of the box cases are run in the
graphical version.

163 box boxall.out Output file (printout file) for the basic box
case

164 box smooth.f19 Control scalars to read in the basic box case
and smooth it a little. This data file is included
on the tape, but this excercise is not listed in
this manual as a test case.

165 wing wing.f10 Control scalars for the wing with flat-plate
extension case

166 wing wing.f11 X,Y,Z coordinates of points on the wing with
flat-plate extension case

73

167 wing wing.f18 Indices defining the grid surfaces to be viewed
when the wing with flat-plate extension case is
run in the graphical version

168 wing wing.out Output file (printout file) for the wing with
flat-plate extension case

169 hcc hemcylcon.f10 Control scalars for starting the hemisphere-
cylinder-cone case

170 hcc hemcylcon.f11 X,Y,Z coordinates of points on the
hemisphere-cylinder-cone body

171 hcc hemcylcon.f12 Cell heights at each body point in block 2 for
the hemisphere-cylinder-cone case

172 hcc hemcylcon.f18 Indices defining the grid surfaces to be viewed
when the hemisphere-cylinder-cone case is run
in the graphical version

173 hcc hemcylcon.f16 Control scalars for the re-starting the
hemisphere-cylinder-cone case

174 hcc hemcylcon.res.
out

Output file (printout file) for the hemisphere-
cylinder-cone case, after restart

175 box boxtm.f10 Control scalars for the first variation on the
box case -- using Thomas & Middlecoff
clustering terms

176 box boxtm.out Output file (printout file) for the first variation
on the box case -- using Thomas & Middlecoff
clustering terms

177 box boxopt.f10 Control scalars for the second variation on the
box case -- using locally optimal relaxation
parameter (Ω)

178 box boxopt.out Output file (printout file) for the second
variation on the box case -- using locally
optimal relaxation parameter (Ω)

Table 12. Data Files for Example Cases (Files 160 - 178)

THE BASIC BOX CASE

As said above, this case is a box with edges conforming to what would be a cube, but
with sinusoidal bumps on all six sides. The number of cycles comprising the bumps
varies between different directions and different faces. The amplitudes of the bumps are
large (approx. ± 0.18 times the length of a side) in the centers of the faces, and reduced to
near zero at the edges. The distribution of points on the faces is consistent with the clus-
tering requested in the interior.

A look at boxall.f10 will reveal four sets of "iterations" lines. On them it can be seen that
we are using the coarse/fine technique. This is made possible by the fact that the

74

numbers of points in each direction (see the "dimension" line), 46, 49, and 52, are all of
the form 3n+1 (for different values of integer n). This requires prior planning.

The "iterations" lines also reveal the basic recommended "game plan" for running the
code:

• a few coarse iterations with control turned off to smooth out the sometimes odd
initial conditions, followed by

• enough coarse iterations with control turned on to more or less converge the
coarse case, followed by

• enough fine iterations to finally converge the case. This last step is first per-
formed with control terms turned off (not shown) to verify the correctness of the
boundary treatment by generating an uncontrolled grid, and then with control
terms turned on (as shown) to achieve the desired control of cell size and skew-
ness near boundaries.

A plot of the iteration history is seen in Figure 2a. Two functions are shown on this
graph. The first is Maxmove, the amount that the point which moves the farthest between
successive iterations moves. The other function is Avemove, the average amount that all
the points move between successive iterations. It should be emphasized that these
functions are plotted in the user's own units. The box in this example is nominally a cube
one unit on a side, and in reference to that we see that the Maxmove is converged to
about 0.2*10-6 units and Avemove is converged to about 0.25*10-7 units. Such a
convergence history, with those functions starting high, doing some wiggling, and then
being reduced monotonically by several orders of magnitude, is typical of a properly
converged solution. If these two functions don't eventually decay by several orders of
magnitude, then convergence has not been achieved, and the resulting grid will probably
not conform to the user's requirements. Most users in most cases will not really need
such a high degree of convergence as shown here, and so may consider reducing the
number of iterations. The small wiggles at the very end of the Maxmove plot indicate
that the solution has been converged to the limit imposed by round-off error. All the
cases shown here were run on a Silicon Graphics Indigo2 R4400 workstation, a machine
which does 32-bit floating-point arithmetic.

This case has also been run on a CRAY C-90, where the resulting convergence history is
somewhat different but has the same general trends. It should be noted, however, that in
the vectorized CRAY version the difference stencil used in the Point-SOR solver is
different. At some of the points at which new data is used in the serial version, old data
must be used in the vectorized CRAY version. This is necessary to avoid data
dependency problems. Although vectorization on the CRAY greatly reduces the time per
iteration, the modified difference stencil tends to increase the number of itertions
required.

Figure 2b is a plot of two different functions, plotted against the same horizontal scale,
for the same case. One is Pqrmax, the maximum of the absolute values of the S&S-type
RHS terms over all boundary surfaces where control is activated. This function should,
as seen here, rise to some large value and then level off. This leveling-off indicates that
the S&S-type RHS terms, which are found iteratively, have been converged. The other
function plotted here, Pqrcor, is the maximum of the absolute values of the change in (or
correction of) the S&S-type RHS terms over all boundary surfaces where control is
activated. In not-too-precise terms, Pqrcor could be thought of as the derivitive of
Pqrmax. Thus Pqrcor tending toward zero also indicates that the S&S-type RHS terms
have converged.

75

Figure 3a shows the left-hand boundary surface, with three more-or-less horizontal
interior grid surfaces, in the finished grid. This is what grids look like when run in the
graphics version of the code, except that here the Figure is reduced to grayscale while the
acutal screen is in color. The body-conforming nature of the grid is shown, as is the suc-
cessful imposition of a small and uniform cell height and near-orthogonality near he
boundary surfaces. Elliptic methods, of which this is one, are known for generating very
smooth grids, and that is seen here.

Figure 3b shows two intersecting interior grid surfaces in the same grid, at a similar
orientation.

Another look at the file10 for this case will show that omega has been raised from its
default value of 0.7 to a value of 1.0 for this case. The user may wish to experiment with
raising that parameter further to achieve faster convergence. A value of 1.3 or 1.4 should
converge, and it should cause the number of required iterations to be reduced by half.

76

Figure 2. Convergence Histories for Basic Box Case.

Figure 2a. Point Movement Functions.

77

Figure 2b. Control Term Functions.

78

Figure 3. Wavey-Sided Box Grid.

Figure 3a. Exterior Surface With Three Interior Surfaces. Graphical User
Interface (GUI) Also Shown.

79

Figure 3b. Two Intersecting Interior Surfaces.

80

THE WING WITH FLAT PLATE EXTENSION CASE

One of the principal new features of the "Ames-Langley Technology Upgrade" is an
improved ability to bend a grid across a sharp corner in a boundary surface. The ultimate
example of that is wrapping a grid across the edge of a flat plate. The need to do that
arises more often than one might imagine, with this case being an example. A C-type
grid is wrapped about the leading edge of a wing, and then for topological purposes that
wing is extended in the spanwise direction as a flat plate.

Figure 4a shows the wing, having a NACA 0012 section, its extension in the spanwise
direction, and another planar extension in the wake region. All this constitutes the body
boundary surface. It is shown from the root end of the wing looking toward the tip.

Figure 4b is from a different point of view -- from the tip end looking back toward the
root. The flat plate extension in the spanwise direction is clearly shown, along with
portions of two grid surfaces wrapping around the wing and its extension. An extreme
close-up of an interior grid surface wrapping around the leading-edge of the flat plate
extension is shown in Figure 4c.

The convergence history for this case is shown in Figures 5a and 5b.

81

Figure 4. Wing With Flat-Plate Extension Grid.

Figure 4a. Body, Consisting of Wing With Flat-Plate Extension in Spanwise
Direction and Planar Extension in Streamwise Direction.

82

Figure 4b. Wing and Portions of Two Interior Surfaces Wrapping Around.

83

Figure 4c. Close-Up of Interior Surface Wrapping Around Leading-Edge of
Flat-Plane Extension

84

Figure 5. Convergence Histories for Wing and Flat-Plate Extension Case.

Figure 5a. Point Movement Functions.

85

Figure 5b. Control Term Functions.

86

THE HEMISPHERE-CYLINDER-CONE CASE

The value of the hemisphere-cylinder-cone case is that it illustrates almost all possible
boundary treatments. It is also a multiple-block case, and the freezeblock feature is used.
We have also chosen to illustrate reading cell heights from file12.

The body is shown in Figure 6a, with an axis trailing out the back. Many grids, including
most aircraft grids, have planar symmetry and so only one half of the configuration is
actually used. That is the case here; if we define the hemisphere as the front (or nose) of
the configuration, then the left half is missing and only the right half is gridded.

This case also illustrates the use of spherical topology in the block about the
hemispherical nose. Spherical topology should be used whenever the grid has a spherical
axis, such as is seen ahead of the nose in this case. If the use of spherical topology is
called for by the actual problem being gridded, and spherical topology is not chosen in
this code, decidedly odd behavior can result on and near the axis. Note that in this case it
was found necessary to reverse the handedness of this block because of the use of spheri-
cal topology, as described in a previous section on the "handedness" input data line.

Some of the interior grid surfaces are shown in Figure 6b.

Returning to the file10 for this case, the "write-for-restart" line shows that a restart file
was written and a restart was performed. The reason for this is two-fold. First, it simply
illustrates the code's restart capability. Secondly, a small problem was found in block 3,
about the axis behind the body. As the code continued to iterate points moved closer and
closer to the X-axis, until their coordinates in the Y- and Z-directions approached round-
off. This can cause problems, so we employed the simple artifice of ceasing to iterate on
block 3 after 500 iterations (out of a total of 2,000). The input parameter "freezeblock="
is set to "ye" for block 3 in the restart input data file hemcylcon.f16.

The restart was performed after 500 iterations. Plots of convergence histories for blocks
1 and 2, shown in Figures 7a through 7d, show a small disruption at that point, from
which the code quickly recovers. In other cases testers have seen no disruption of the
convergence hisory at a restart. Numerical values for the convergence histories for
blocks 1 and 2, in their entirety from start to finish, are shown on the supplied output file,
hemcylcon.res.out, taken from the restart run. The convergence history for block 3,
though shown in Figure 7e, appears in numeric form only on the output file resulting
from the starting run which is not included on the program distribution tape. Note that
there is no plot of the convergence of control terms for block 3, because all boundary sur-
faces in block 3 have control turned off.

87

Figure 6. Hemisphere-Cylinder-Cone Grid.

Figure 6a. Body With Trailing Axis.

88

Figure 6b. Body, Symmetry Plane, Body, and Selected Interior Surfaces.

89

Figure 7. Convergence Histories for Hemisphere-Cylinder-Cone Case.

Figure 7a. Point Movement Functions for Block 1.

90

Figure 7b. Control Term Functions for Block 1.

91

Figure 7c. Point Movement Functions for Block 2.

92

Figure 7d. Control Term Functions for Block 2.

93

Figure 7e. Point Movement Functions for Block 3.

94

FIRST VARIATION ON THE BASIC BOX CASE -- THOMAS & MIDDLECOFF
CLUSTERING TERMS

The basic box case used Steger and Sorenson clustering terms. This case uses both S&S
terms and Thomas and Middlecoff terms, with blending between the two. See the
"iterations" lines in boxtm.f10. The differences between the grids are difficult to see in
plots such as appear in this manual, so no attempt is made to illustrate them. The
interested user should generate his own results and look closely at them. For some cases
grids generated this way are superior to those generated with S&S terms alone. Such
things are highly case-dependent, so the user will have to experiment and come to his
own conclusions.

The convergence history for this case is presented in Figures 8a and 8b. The S&S RHS
terms for this case shown in Figure 8b converge in about 350 iterations, as opposed to
425 iterations for the basic box case shown in Figure 2b. The point movement functions
shown in Figure 8a converge in about 650 iterations for this case, as opposed to about
1,000 iterations for the basic box case shown in Figure 2a.

95

Figure 8. Convergence Histories for Box Case With Thomas & Middlecoff RHS
Terms.

Figure 8a. Point Movement Functions.

96

Figure 8b. Control Term Functions.

97

SECOND VARIATION ON THE BASIC BOX CASE -- LOCALLY OPTIMUM
RELAXATION PARAMETER (Ω)

This second variation on the basic box case is one which uses locally optimum relaxation
parameters (Ω). Note by inspection of file boxopt.f10 that it was found necessary to
reduce "how-much" to 0.6 from its default of 0.7 to correct a failure to converge. But
with that parameter set that way, it did converge faster than the basic case, as seen in
Figures 9a and 9b. The S&S RHS terms for this case shown in Figure 9b converge in
about 350 iterations, as opposed to 425 iterations for the basic box case shown in
Figure2b. The point movement functions shown in Figure 9a converge in about 800
iterations for this case, as opposed to about 1,000 iterations for the basic box case shown
in Figure 2a.

98

Figure 9. Convergence Histories for Box Case With Optimum Omega.

Figure 9a. Point Movement Functions.

99

Figure 9b. Control Term Functions.

100

INPUT FILTERS

PREGRAPE/AL PROGRAM

PREGRAPE/AL is another program, supplied as a companion to
3DGRAPE/AL. Some users use the popular program GRIDGEN to do surface
modeling and surface gridding. PREGRAPE/AL reads output from GRIDGEN
(which could be input to GRIDGEN3D), and one other file, and outputs files
which serve as input to 3DGRAPE/AL. Thus 3DGRAPE/AL can take the place
of GRIDGEN3D. PREGRAPE/AL reads the *.bnda and *.mlga files which are
output from GRIDGEN, and the *.ctrl file the user makes for this program. It
outputs file10, file12, file16, and file18 for input to 3DGRAPE/AL.

Note: --> GRIDGEN, as used herein, refers to releases through no. 8 of that code. As
of this writing there was an error in the .bnda file produced by the new version 9 of that
code, which prevented both this code and GRIDGEN3D from running properly. When
that error is fixed, this code will be made to run with GRIDGEN version 9.

Files which comprise PREGRAPE/AL are listed below:

File
number:

Sub-
directory:

File name: Purpose or contents:

179 pre pregrapeal_p.f Main program of the PREGRAPE/AL
program. It reads the *.bnda and *.mlga files
which are output from GRIDGEN, and the
*.ctrl file the user makes for this program. It
outputs file10, file12, file16, and file18 for
input to 3DGRAPE/AL.

180 pre arlndist_p.f Calculate the blending coefficients based on
arclength rather than the actual parametric
index of a given face

101

181
182
183
184
185
186
187
188
189
190
191

pre blnkfl7_p.f
blnkfl8_p.f
blnkfl10_p.f
blnkfl12_p.f
blnkfl14_p.f
blnkfl15_p.f
blnkfl40_p.f
blnkfl60_p.f
blnkfl76_p.f
blnkfl79_p.f
blnkfl80_p.f

Copy non-blank characters from an input
string to an output string. The length of the
string is the number in the filename.

192 pre dsout3_p.f Utilizes the LARCS or TFI interpolation to
specify a delta S per point.

193 pre ext2out_p.f Convert the .job file to a .out file.

194
195

pre getdfalt_p.f
gtdfalt2_p.f

These subroutines are designed to extract the
default file name from the user inputted
control file name.

196 pre maxdim_p.f Determine the maximum value of the two
indices in a face for the respective directions.

197 pre newfile_p.f Determine if the user wants to try entering
another file or just stop.

198 pre nofile_p.f Tell the user if the file just opened exists.

199 pre ntrp_p.f Compute the angle to be specified on a face,
based on interpolation from the edges.

200 pre polchk_p.f Determine whether or not a given face is a
pole boundary.

201 pre split_p.f Uncompress the value n into two numbers
ndiv,nmod based on m.

202 pre tmflwcon_p.f Determine if the face that has the boundary
condition (ibc) should have orthogonality
controlled or not.

203 pre makefile.pre Makefile to compile and link PREGRAPE/AL

204 pre exf.ctrl Control scalars to run PREGRAPE/AL

205 pre exf.bnda Output file from GRIDGEN

206 pre exf.mlga Output file from GRIDGEN

Table 13. PREGRAPE/AL Program and Data Files (Files 179 - 206)

In order to use the 3DGRAPE/AL code, just as the 3DGRAPE code, a definition of the
configuration's surface is needed. To make 3DGRAPE/AL a complete system, a volume
grid block and 2D parametric block-face grid generator are required. To provide this

102

information, PREGRAPE/AL, an interface code, was created to link GRIDGEN2D to
3DGRAPE/AL.

The PREGRAPE/AL code uses its own input file and GRIDGEN3D input data to
generate the 3DGRAPE/AL control decks. Other data required to run 3DGRAPE/AL are
provided by PREGRAPE/AL, including:

• UNIX shell scripts for 3DGRAPE/AL (and 3DVOLCHK, another program not
included in this package).

• Generation of 3DGRAPE/AL control decks (files 10, 11 and 16).

• Cell heights for Steger and Sorenson forcing function controls using either 2DTFI
or LARCS (file 12).

• Specification of incidence angle at a boundary (file 12).

• Parameter file generation for dimensioning 3DGRAPE/AL (params.h).

• UNIX script to compile and link 3DGRAPE/AL

The PREGRAPE/AL input file has the following form:

Working directory of 3DGRAPE runs (a):/scr/salter/wood/sc1/
UNIX Script for CRAY,IRIS,ONYX,SUN (a):iris
FLAGS ctd,face,dsi,3dj,3dg (5i2): 0 0 0 0 1
Configuration name (a):Straight Cone #1 for UPS Study
Default basename (a):sc1
Block Information file (*.bnda) (a):sc1.bnda
Face Information file (*.mlga) (a):sc1.mlga
Interactive Visualization (a):elv10-vol.view
#of Newstart iteration sequences (i2):01
 Number of Laplace(0) Coarse/ Steger & Thomas & Relaxation
 Iterations Poisson(1) Fine Sorenson Middlecoff Rate
 800 1 0 1 0 0.5
#of Restart iteration sequences (i2):01
 Number of Laplace(0) Coarse/ Steger & Thomas & Relaxation
 Iterations Poisson(1) Fine Sorenson Middlecoff Rate
 800 1 1 1 1 -.7
Sorenson init (0); 3DTFI (1) (f12.6): 1.
Decay rates for each block/face (f12.6):-40.
 Block Face Decay Rate
 Number Number Factor
 1 1 -1.00
 1 2 0.20
 1 3 0.35
 1 4 0.35
 1 5 0.30
 1 6 0.35
Orthogonality Control (i4): -6
 Block Face Interp. Interp. Blending Normalized 2DTFI Incidence
 Number Number indx1->3 indx2->4 Function Arc Lengths LARCS Angle
 1 1 2 2 3 1 2 1
 1 2 2 2 3 1 2 1
 1 3 1 1 1 1 2 0
 1 4 1 1 1 1 1 1
 1 5 1 1 3 1 2 1
 1 6 2 2 3 1 2 1

The file is read with formatted Fortran statements for those lines containing the colons ":''
and the rest of the information is read with free formats. Two header lines are used for

103

understanding the input file for the iteration control sequences, orthogonality decay rates
and the calculation type for determining cell size. These header lines are expected and
will be read as 80 column character strings. The description of each line is tabulated
below:

Line
no.:

Format: Description:

1,2 (a) Header for the file.

3 (41x,a) Directory to find all data, including the source code.
Note: If the directory has a ~ in front of it, the script written will be
for a C-Shell, as opposed to the default Bourne Shell.

4 (41x,a) Type of machine 3DGRAPE/AL will use.

5 (41x,5i2) Control flags for the types of data to be produced:
Flag # Description:
1 Control deck generation.
2 File 11 construction for ``read-in-fixed'' data.
3 Cell size and incidence angle calculations.
4 3DGRAPE/AL UNIX script generation.
5 3DGRAPE/AL parameter file dimensioned based on grid

computational limits.

6 (41x,a) First comment line in the 3DGRAPE/AL control deck, typically
used to label the control file for clarity.

7 (41x,a) Default basename of GRIDGEN and 3DGRAPE/AL files.

8 (41x,a) Truncated GRIDBLOCK ascii file name.

9 (41x,a) GRIDGEN2D block face grid definitions.

10 (41x,i2) Number of iteration sequences to be run in the ``newstart'' control
deck.

10a-b (a) Header for columns of following data.

10c-? (*) Number of iterations, activation of orthogonality controls, coarse or
fine solution, activation of the Steger & Sorenson source terms,
activation Thomas and Middlecoff source terms and the relaxation
rate for a specific set of iterations in the newstart control decks.
The four middle colums require a (1-$>$YES/0-$>$NO), while the
last column is a positive or negative number for the relaxation rate
of grid point movement. A negative number is that percentage of
the optimum value. A positive number is a constant to be used.

11 (41x,i2) Number of iteration sequences to be run in the ``restart'' control
deck.

11a-b (a) Header for columns of following data.

104

11c-? (*) Number of iterations, activation of orthogonality controls, coarse
or fine solution, activation of the Steger & Sorenson source terms,
activation Thomas and Middlecoff source terms andthe relaxation
rate for a specific set of iterations in the restart control decks. The
four middle colums require a (1-$>$YES/0-$>$NO), while the last
column is a positive or negative number for the relaxation rate of
grid point movement. A negative number is that percentage of the
optimum value. A positive number is a constant to be used.

12 (41x,f12.6) Volume grid initialization through Sorenson's method (#1), or
optimized 3DTFI (#2).

13 (41x,f12.6) Decay rate specification for the forcing functions. A negative
number denotes the default. The default in the ``newstart'' deck is
``keep-default''. The default in the ``restart'' deck is the conversion
from GRIDGEN to 3DGRAPE/AL using the absolute value of the
decay rate read as the value of the EXPO variable, illustrated later.
Otherwise a positive number is the number of block/face
combinations that will use lines 12a-?.

13a-b (a) First line header for columns of following data.

13c-? (*) Grid block number, face number and decay rate to be used to
exponentially decay the orthogonality controls into the volume. A
negative number for the decay rate denotes ``keep-default''for the
specified block/face combination in the newstart and restart. A
positive value sets the ``keep-default'' in the newstart and the
specified value in the restart.

14 (41x,f12.6) Cell height control of each block/face combination and the angle of
incidence of the grid lines to the boundary. If the number is
negative, the TEAM nomenclature and options within GRIDGEN,
are used. In this case, only pole boundaries and matching faces
have no control. All other face types will have orthogonality. If this
number is positive, it represents the number of block/face
combinations with controls to be specified in the following format

14a (a) First line header for columns of following data.

14b (a) Second line header for columns of following data.

14c-? (*) Block number, face number, type of interpolations for adjoining
opposing faces: Linear (1), Elliptic (2), Hyperbolic blending of
both opposing pairs, use of normalized arc lengths for
interpolations, use of LARCS or 2DTFI for iterpolations and the
incidence angles to be used for each block/face combination.

Table 14. Description of PREGRAPE/AL input file

There are two basic methods for the computations of cell size and incidence angle used
for each face with orthogonality activated. The first is 2DTFI, which only uses the 6th
field in this portion of the input deck. The 6th field determines if the 2DTFI is done based
on computational coordinates or the physical coordinates. To use the computational
coordinates, place a 0 in the 6th field, other wise set it to 1 to use normalized arc-lengths
based on the physical coordinates.

105

The second method of interpolation is to use LARCS or Local ARc-length Cell Sizing.
Briefly, the LARCS method take blendings of the two opposing paired faces that connect
to the specified face and combine the effects of each into a single blended surface
representing a value. In the case of the cell sizes, the blended surface represents the cell
sizes at each point on the surface, in computational or physical space. For example, if the
cell sizes of face 5 are to be computed using the LARCS method, the two opposing paired
faces that connect to face 5 are faces 1 & 2 and faces 3 & 4, respectively. First, each cell
size distribution, dependent on the mating or connecting line to the specified face, are
blended using bi-linear or elliptic interpolation, for each opposing paired faces. Then a
hyperbolic blending function is used to blend the two interpolated surfaces into a single
blended surface. Though the method may seem extensive, it produces much smoother
distributions of cell sizes or incidence angles than 2DTFI.

The LARCS method requires the information in fields 3 through 6. Field 3 determines
the type of interpolation between the first set of opposing faces (bi-linear(1) or
elliptic(2)). Field 4 determines the type of interpolation between the second set of
opposing faces. Field 5 determines which interpolated or blended surface of LARCS to
use for specifying the cell sizes and incidence angles. The options are:

(1) Use the interpolated surface from the first opposing pair of faces.

(2) Use the interpolated surface from the second opposing pair of faces.

(3) Use the hyperbolically blended surface of both paired opposing faces.

For the opposing pairs of each face, the following table can be used:

Face: Pair #1 Pair #2
1 5 & 6 3 & 4
2 5 & 6 3 & 4
3 5 & 6 1 & 2
4 5 & 6 1 & 2
5 1 & 2 3 & 4
6 1 & 2 3 & 4

Table 15. Opposing Face Pairs

Finally, the incidence angle specification provides an alternative to orthogonality.
Utilizing the incidence angle specification, forces PREGRAPE/AL to compute the angle
of incidence of each grid line emanating from a specified boundary, by interpolating the
angles from the edges of that specified boundary.

NOTE: The computed cell heights/sizes and the boundaries with interpolated angles of
incidence will have a different file name, but all required data will appear in file 12. The
individual file names will have the following convention:

dsiblkBBfF.tcp -> Cell Sizes in TECPLOT data format

ntrpblkBBfF.tcp -> Incidence angles in TECPLOT data format

where BB represents the block number, and F represents the face number.

For the PREGRAPE/AL input, the user must specify a negative EXPO value to use the
GRIDGEN3D to 3DGRAPE/AL conversion. For GRIDGEN3D, the default EXPO is 6.

106

Although the file seems involved and an added step, the PREGRAPE/AL code provides a
lot of flexibility in the grid-generation process. The transition between GRIDGEN and
3DGRAPE/AL is smooth and efficient. This transition also enables the user to generate
large grids easily and efficiently.

The method of volume grid generation typically used in conjunction with the
3DGRAPE/AL code is the following:

• Construct or obtain the surface of a configuration.

• Load the surface geometry definition into GRIDBLOCK of the GRIDGEN code.

• Construct the grid-blocking structure to be used, as well as setting CFD boundary
conditions and face-matching definitions.

• Load the GRIDBLOCK output into GRIDGEN2D and create all defining faces of
the grid-block structure. Note, there are six faces for each block.

• Output the face grid distributions (also referred to face definitions) and the bound-
ary conditions to load into the GRIDGEN3D code.

• Set up the input file for PREGRAPE/AL and run it with the input [file].bnda and
[file].mlga files usually read by GRIDGEN3D.

• Compile, link and execute the 3DGRAPE/AL code for the geometry to conver-
gence or until the grid structure meets the needs of the user.

• Execute the volume checking portion of the 3DGRAPE/AL code to evaluate grid
quality, and to determine if further iterations with the 3DGRAPE/AL code is
necessary.

The user may have to repeat the last 6 steps of the above method to obtain good
grid distributions, or better parametric dimensional limits.

Warning --> When PREGRAPE/AL runs it produces a new params.h file. Thus, if it is
run in the same directory as are stored the source files for the 3DGRAPE/AL code, it will
wipe out the original params.h file copied from the distribution tape. Users should not
run PREGRAPE/AL in the same directory as the 3DGRAPE/AL source files unless they
are sure that they wish to employ this feature.

F10FILTER PROGRAM

The F10FILTER program is another program supplied with 3DGRAPE/AL which
converts file10 input files as used in the earlier 3DGRAPE program into file10 input files
which can be read by the new 3DGRAPE/AL program. It is a simple, straightforward
Fortran program. The user should compile and link it in the obvious way, as with any
other simple Fortran program, as:

f77 -o f10filter f10filter.f

To use it simply type the program name, followed by two file names -- the name of the
old existing file10 data file, and the name of the new file10 data file to be created.
Example:

f10filter old.f10 new.f10

There are comments at the top of the Fortran source program. It is recommended that the
user read them.

107

Listed below are the two files in this subdirectory.

File
number:

Sub-
directory:

File name: Purpose or contents:

207 f10filter f10filter.f The Fortran source of the F10FILTER
program.

208 f10filter ex1.f10 A sample data case,which can be read by the
old 3DGRAPE program.

Table 16. F10FILTER Program and Data Files (Files 207 - 208)

THEORETICAL DEVELOPMENT

POISSON EQUATIONS IN PHYSICAL SPACE

The original 3DGRAPE program and the new 3DGRAPE/AL program both generate
grids by iteratively solving the Poisson Equations in three-dimensions. A mapping is
thus found between the computational coordinates ξ,η,ζ and the physical coordinates
X,Y,Z. The equations are typically given in the computational space as

ξxx + ξyy + ξzz = P(ξ,η,ζ) (1a)

ηxx + ηyy + ηzz = Q(ξ,η,ζ) (1b)

ζxx + ζyy + ζ?zz = R(ξ,η,ζ) (1c)

However, it is natural to apply them in the physical space. It is natural to specify the grid
boundary conditions by giving X,Y,Z at fixed values of ξ,η,ζ rather than to give values of
ξ,η,ζ at fixed values of X,Y,Z. The transformation of Eqs. 1 to physical space proceeds
as follows. Clearly, we must have

ξ = ξ(x,y,z) (2a)

η = η(x,y,z) (2b)

ζ = ζ(x,y,z) (2c)

To effect this transformation we must also have

x = x(ξ,η,ζ) (3a)

y = y(ξ,η,ζ) (3b)

108

z = z(ξ,η,ζ) (3c)

Differentiating Eqs. 2 and applying the chain rule gives

dξ

dη

dζ

 =

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

dx
dy
dz

(4)

Likewise, differentiating Eqs. 3 and applying the chain rule gives

dx
dy
dz

 =

xξ xη xζ

yξ yη yζ

zξ zη zζ

dξ

dη

dζ

(5)

We designate the 3 x 3 matrix in Eq. 5 as M, assume that its inverse exists, and pre-
multiply both sides of Eq. 5 by M-1. This gives

M-1
dx
dy
dz

 =

dξ

dη

dζ

(6)

Substituting from Eq. 6 into Eq. 4 gives

M-1
dx
dy
dz

 =

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

dx
dy
dz

(7)

We know that, in general, if

Av = Bv (8a)

and if B-1 exists then

B-1 A v = v (8b)

Therefore it must be true that

B-1 A = I (8c)

Pre-multiplying by B gives

109

A = B (8d)

Applying Eqs. 8 to Eq. 7 gives

M-1 =

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

(9)

For this to be useful, we must find M-1. It is known, in general, that

A-1 = Adj(A)
Det(A)

(10)

Where Adj(A) is the adjoint of A and Det(A) is the determinant of A. The adjoint of A is
a matrix having as each element the corresponding cofactor of A. Thus, from Eq. 9, we
have

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 =
γ11γ12γ13

γ21γ22γ23

γ31γ32γ33

/J (11)

where γij is the ij-th cofactor of M and J is the determinant of M. By inspection of Eq. 11
we see that

ξx = γ11/J (12a)

ξy = γ12/J (12b)

ξz = γ13/J (12c)

ηx = γ21/J (12d)

ηy = γ22/J (12e)

ηz = γ23/J (12f)

ζx = γ31/J (12g)

ζy = γ32/J (12h)

ζz = γ33/J (12i)

110

Completion of the derivation of the transformed Poisson equations requires further
differentiating the metrics in Eqs. 12, substituting them into Eqs. 1, and collecting terms.
This process is simple calculus, but very lengthy and beyond the scope of this TM. The
result is

α11rξξ + α22rηη + α33rζζ

 + 2 (α12rξη + α13rξζ + α23rηζ)
= -J2 (Prξ + Qrη + Rrζ)

(13a)

where:

r=
x
y
z

(13b)

and

α ij= Σ
m =1

3

γmiγmj (13c)

IMPROVED STEGER & SORENSON RHS TERMS

The distribution of points in the grid results primarily from the influence of the Right-
Hand Side (RHS) terms, or forcing functions. We are free to choose them as we please.
In both new and old programs they are:

P(ξ,η,ζ) = P1(η,ζ)e-aξ + P2(η,ζ)e-a(ξmax-ξ)

 + P3(ξ,ζ)e-aη + P4(ξ,ζ)e-a(ηmax-η)

 + P5(ξ,η)e-aζ + P6(ξ,η)e-a(ζmax-ζ)

(14a)

Q(ξ,η,ζ) = Q1(η,ζ)e-aξ + Q2(η,ζ)e-a(ξmax-ξ)

 + Q3(ξ,ζ)e-aη + Q4(ξ,ζ)e-a(ηmax-η)

 + Q5(ξ,η)e-aζ + Q6(ξ,η)e-a(ζmax-ζ)

(14b)

R(ξ,η,ζ) = R1(η,ζ)e-aξ + R2(η,ζ)e-a(ξmax-ξ)

 + R3(ξ,ζ)e-aη + R4(ξ,ζ)e-a(ηmax-η)

 + R5(ξ,η)e-aζ + R6(ξ,η)e-a(ζmax-ζ)

(14c)

111

Clearly, these RHS terms P,Q,R are simply superpositions of other terms Pn,Qn,Rn for
1≤n≤6, multiplied by exponentials which are at their maximum value, one, at the
boundary surfaces and which decay with distance into the interior of the block. The
positive constant "a" in Eqs. 14 is set by the user, and determines the rate of exponential
decay in the size and influence of the RHS terms.

A nomenclature for the face numbers has been introduced. It is seen in Table 7. By
examining that nomenclature we see that at each of the boundaries the terms in P,Q,R
having their subscripts equal to the face number are non-zero, and the other terms in
P,Q,R approach zero due to the behavior of their exponential factors. At face 3, for
example, Eqs. 14 reduce to:

P(ξ,η,ζ) = P3(ξ,ζ) (15a)

Q(ξ,η,ζ) = Q3(ξ,ζ) (15b)

R(ξ,η,ζ) = R3(ξ,ζ) (15c)

So then we can find the terms Pn,Qn,Rn at face n by considering each face in turn. At
each point on each face we:

• Assume that the Poisson Equations, Eqs. 13, are satisfied.

• Find values for all first and second partial derivatives required by Eqs. 13.

• Eqs. 13 reduce to a 3 x 3 set of linear equations in the three unknowns Pn,Qn,Rn.
Solve them.

Having found all the Pn,Qn,Rn, for 1≤n≤6, we can calculate P,Q,R at all points in the grid
from Eqs. 14.

However, finding values for all first and second partial derivatives at each face is not
trivial. To further illustrate this we must restrict our attention to a particular face. We
choose face 3 to illustrate. On face 3 the derivatives rξ , rζ , rξζ , rξξ , and rζζ can be found
by differencing known boundary face points. The derivatives rηη are found by differenc-
ing the grid solution at the current time step, as described on page 78 of Ref. 2. If we
could find derivatives rη we could then difference them to find derivatives rξη and rηζ .

We find derivatives rη by adding additional equations which embody the user's
requirements on cell height and skewness. In the old 3DGRAPE method we added the
three equations

rξ . rη = 0 (16a)

rη . rζ = 0 (16b)

rη . rη = S2 (16c)

As seen in Table 7, ξ and ζ vary over face 3, and η varies along lines intersecting the
face. Thus Eqs. 16a and 16b require orthogonality between the lines intersecting the face
and the coordinate lines running over the face. Eq. 16c requires that the cell height on the
surface be the positive constant S.

112

It is at this point that the old 3DGRAPE method and the new 3DGRAPE/AL method
differ. In the new method we realize that when making grids about real-world
configurations, with singularities and slope discontinuities, it is sometimes necessary to
have grid cells which are skewed in a specified way. Lacking this ability, an inconsis-
tency can develop which can either cause the elliptic solver to not converge, or result in
an unsuitable grid. And so Eqs. 16 are replaced by

rξ . rη = rξ . rη cosθ1 (17a)

rη . rζ = rη . rζ cosθ2 (17b)

rη . rη = S2 (17c)

where θ1 is the angle between the coordinate line intersecting face 3 and the line of

varying ξ on face 3, and θ2 is the angle between the coordinate line intersecting face 3

and the line of varying ζ on face 3. For θ1 and θ2 equal to 90˚, Eqs. 17 reduce to
Eqs.16.

We now proceed to solve Eqs. 17 for
r

rη . Expanding, we have

xξxη + yξyη + zξzη = c1 (18a)

xζxη + yζyη + zζzη = c2 (18b)

xη
2 + yη

2 + zη
2 = S2 (18c)

where

c1 = rξ S cosθ1

c2 = rζ S cosθ2

C1 and c2 are constants because θ1, θ2, S, and the points on face 3 are user-defined
inputs. Equations 18 are three equations in the three unknowns xη,yη,zη which are the
elements of

r

rη . But because Eq. 18c is quadratic, solving this set of equations is not
straightforward. We will make an assumption about one of the unknowns and solve,
make that assumption about another of the unknowns and solve, and then make that
assumption about the last of the unknowns and solve. We will then select the answer
which is "best."

The first assumption we make is that xη is a constant. Terms involving xη in Eqs.18a
and 18b are brought to the right side of the equations, and then the equations are solved,
yielding

yη = xηγ22 / γ12 + k1 (19a)

zη = xηγ32 / γ12 + k2 (19b)

where

113

k1 =
c1zζ - c2zξ

-γ12

k2 =
c2yξ - c1yζ

-γ12

K1 and k2 are constants. Then from Eq. 18c

xη =
-b ± b2 - 4ac

2a
(20)

where

a = 1 + γ22/γ12
2 + γ32/γ12

2

b = 2
γ12

k1γ12 + k2γ32

c = k1
2 + k2

2 - S2

The second assumption is that yη is a constant. Terms involving yη in Eqs. 18a and 18b
are brought to the right side of the equations, and then the equations are solved, yielding

xη = yηγ12 / γ22 + k1 (21a)

zη = yηγ32 / γ22 + k2 (21b)

where

k1 =
c1zζ - c2zξ

γ22

k2 =
c2xξ - c1xζ

γ22

Then from Eq. 18c

yη =
-b ± b2 - 4ac

2a
(22)

where

a = 1 + γ12/γ22
2 + γ32/γ22

2

b = 2
γ22

k1γ12 + k2γ32

and c is the same as above, in Eq. 20.

114

The third assumption is that zη is a constant. Terms involving zη in Eqs. 18a and18b are
brought to the right side of the equations, and then the equations are solved, yielding

xη = zηγ12 / γ32 + k1 (23a)

yη = zηγ22 / γ32 + k2 (23b)

where

k1 =
c1yζ - c2yξ

-γ32

k2 =
c2xξ - c1xζ

-γ32

Then from Eq. 17c

zη =
-b ± b2 - 4ac

2a
(24)

where

a = 1 + γ12/γ32
2 + γ22/γ32

2

b = 2
γ32

k1γ12 + k2γ22

and c is the same as above, in Eq. 20.

In general, none of these three assumptions is strictly correct. However, it usually turns
out that at least one of them is close enough to correct for this method to generate suitable
grids. It was said that we would choose whichever of these three solutions was "best."
However, Eqs. 20, 22, and 24 each include an ambiguous sign from a square-root
operation. Therefore, we actually have six solutions to choose from. Using each of the
six solutions we compute the Jacobian. If the coordinates in the block are right-handed
(with the "handedness" being a user-defined input) we choose the solution which yields
the largest positive Jacobian. If the coordinates in the block are left-handed we choose
the solution which yields the largest negative Jacobian. The logic behind choosing based
upon the Jacobian is that Jacobians, as defined above, having large absolute values seem
to be present in grids which are more orthogonal, and, conversely, Jacobians having small
absolute values seem to be present in grids which are highly skewed. Thus the elements
of rη are found.

The foregoing is the analysis for face 3. The analysis for face 4 appears nearly identical,
differing only in some of the difference formulas. The analyses for faces 1, 2, 5, and 6
follow in a straightforward manner from the foregoing example.

This formulation for the S&S RHS terms requires a lot of computation but most of it is
done only once, at the start of the iteration schedule. It was said, above, that having all
values for the derivatives at the face those derivatives are substituted into Eqs.13,

115

yielding a 3 x 3 set of linear equations in the three unknowns Pn,Qn,Rn. Their solution
shows Pn,Qn,Rn to be linear functions of the second derivatives rηη which are found by
differencing at each time step. The coefficients in those linear functions are fixed for all
computational time. Therefore, the only computation necessary to find the RHS terms in
each iteration is to re-evaluate rηη , re-compute the linear functions using the fixed coef-
ficients to get Pn,Qn,Rn at each face, and then use Eqs. 14 to re-compute the P,Q,R at
every point in the grid.

The effectiveness of this method is seen in Figure 4. When wrapping a grid around a
sharp edge it is necessary to cause the lines intersecting the surface near the edge to bend
toward the edge for best results. The ultimate example of wrapping a grid around a sharp
edge is to wrap it around the edge of a flat plate. Figure 4 shows a wing with a zero-
thickness extension in the spanwise direction, and a C-H type grid around it. Thus, it is
necessary to wrap a C-type grid around the leading-edge of that wing and its flat-plate
extension. This would not have been possible with the old type RHS terms.

THOMAS & MIDDLECOFF CLUSTERING TERMS

When making grids in regions where all six faces of the computational cube are fixed it is
sometimes advantageous to use clustering functions where the spacing normal to a face is
determined by the spacing on the side walls. The Thomas and Middlecoff clustering
terms, described in Ref. 6, are included here for that purpose. However, the Thomas and
Middlecoff clustering terms

P = Φ(∇ξ . ∇ξ) (25a)

Q = Ψ(∇η . ∇η) (25b)

R = Ω(∇ζ . ∇ζ) (25c)

where

Φ =
rξ . rξξ

rξ . rξ (25d)

ψ =
rη . rηη

rη . rη (25e)

Ω =
rζ . rζζ

rζ . rζ (25f)

are given in the computational space, and to be useful here they must be converted to

physical space. Applying the definition of the ∇ operator, illustrated by

∇ξ = ξxj + ξyk + ξzl (26)

116

where j, k, and l are the unit normal vectors, and reducing, gives

P = Φ(ξx
2 + ξy

2 + ξz
2) (27a)

Q = ψ(ηx
2 + ηy

2 + ηz
2) (27b)

R = Ω(ζx
2 + ζy

2 + ζz
2) (27c)

Substituting the metrics shown in Eqs. 12 into Eqs. 27, and expanding and re-grouping,
gives

P = Φ rη . rη rζ . rζ - rη . rζ /J2 (28a)

Q = ψ rξ . rξ rζ . rζ - rξ . rζ /J2 (28b)

R = Ω rξ . rξ rη . rη - rξ . rη /J2 (28c)

These RHS terms generate good grids in many applications. An exception is the situation
where the opposing side boundaries, from which the T&M terms are calculated, have
very different clustering characteristics. In these cases instabilities in the Poisson solver
can result.

It was found in the development of 3DMAGGS (Ref. 4) that S&S clustering terms tend to
give the most-nearly-orthogonal grids near boundaries, while T&M clustering terms give
the best clustering in the interior of the blocks. And so a blending between the two kinds
of RHS terms was developed, and is included in 3DGRAPE/AL.

OPTIMUM RELAXATION PARAMETER

3DGRAPE/AL solves the 3-D Poisson equations using Point Successive Over Relaxation
(PSOR). In PSOR there is a relaxation parameter, Ω, which determines the rate of
convergence and stability of the method. In the old program the Ω was fixed for all
computational time. That option is still available in the new code as well. However, the
new code also has an algorithm to compute an optimum relaxation parameter at every
point in the grid using the method of Erlich, as described in Ref. 8.

That method requires the equations being solved, here Eq. 13a, to be represented as a
difference equation of the following form:

a0rj,k,l + a1rj+1,k,l + a2rj,k+1,l + a3rj,k,l+1

 + a4rj-1,k,l + a5rj,k-1,l + a6rj,k,l-1 = bj,k,l
(29)

Applying standard central differences to all first and second partial derivatives in Eq. 13a,
and collecting terms, we arrive at the form of Eq. 29, where

a0 = -2 α11

∆ξ 2
 + α22

∆η 2
 + α33

∆ζ 2
(30a)

117

a1 = α11

∆ξ 2
 + J2P

2∆ξ
(30b)

a2 = α22

∆η 2
 + J2Q

2∆η
(30c)

a3 = α33

∆ζ 2
 + J2R

2∆ζ
(30d)

a4 = α11

∆ξ 2
 - J2P

2∆ξ
(30e)

a5 = α22

∆η 2
 - J2Q

2∆η
(30f)

a6 = α33

∆ζ 2
 - J2R

2∆ζ
(30g)

The complex eigenvalues of Eq. 29 at each point, ignoring wave numbers above 1, are

µ = µr + µi = 2
a0

(a1a4cos π
jmax+1

 + a2a5cos π
kmax+1

+ a3a6cos π
lmax+1)

(31)

where µr and µi are the real and imaginary parts of µ, respectively. It is required that

µr 〈 1.

Continuing with Erlich's method, as formulated by Steinbrenner, Chawner, and Fouts on
pages 6-6 and 6-7 of Ref. 9 (with typographical errors corrected), we let

A = µr
2 + µi

2 (32a)

B = µr
2 - µi

2 (32b)

C = A2 - B2 (32c)

D = A2 - B (32d)

E = C + D2 (32e)

F = C3
(32f)

118

Then

ω = (3D + E) F E-D3 - (3D - E) F E+D3 + A2 + 3B2 - 4A2B
A2D

(33)

and the relaxation parameter ω is

ω =
- ω - ω2 + 4ω /2 if D 〉0
- ω + ω2 + 4ω /2 if D 〈0

(34)

This method can reduce the number of iterations required to achieve convergence. The ω
so computed can sometimes be a little too large, and so cause instabilities. Therefore, in
the code, they are multiplied by a limiting factor. The default value of this factor is 0.7,
but a value of 0.6 was found to be necessary in one of the sample cases. These ω are
dependent on the grid at its current time step, and so they are typically re-calculated each
time step. As can be inferred from the above, computing them requires a significant
amount of computer time, so the code has an option wherein they are re-calculated every
n time steps.

POSTSCRIPT FILES

The last group of files on the tape are compressed PostScript files comprising this
manual. It should be possible to "uncompress" them and print them on any PostScript-
compatible printer. After inserting the figure pages in the appropriate places, it should
then be possible to duplicate this manual.

File
number:

Sub-
directory:

Filename: Purpose or contents:

209 ps manual.text.ps.Z The text of this manual, in compressed
PostScript form

210 ps fig.1.ps.Z Figure 1 in compressed PostScript form

211 ps fig.2a.ps.Z Figure 2a in compressed PostScript form

212 ps fig.2b.ps.Z Figure 2b in compressed PostScript form

213 ps fig.3a.ps.Z Figure 3a in compressed PostScript form

214 ps fig.3b.ps.Z Figure 3b in compressed PostScript form

215 ps fig.4a.ps.Z Figure 4a in compressed PostScript form

216 ps fig.4b.ps.Z Figure 4b in compressed PostScript form

217 ps fig.4c.ps.Z Figure 4c in compressed PostScript form

218 ps fig.5a.ps.Z Figure 5a in compressed PostScript form

219 ps fig.5b.ps.Z Figure 5b in compressed PostScript form

220 ps fig.6a.ps.Z Figure 6a in compressed PostScript form

119

221 ps fig.6b.ps.Z Figure 6b in compressed PostScript form

222 ps fig.7a.ps.Z Figure 7a in compressed PostScript form

223 ps fig.7b.ps.Z Figure 7b in compressed PostScript form

224 ps fig.7c.ps.Z Figure 7c in compressed PostScript form

225 ps fig.7d.ps.Z Figure 7d in compressed PostScript form

226 ps fig.7e.ps.Z Figure 7e in compressed PostScript form

227 ps fig.8a.ps.Z Figure 8a in compressed PostScript form

228 ps fig.8b.ps.Z Figure 8b in compressed PostScript form

229 ps fig.9a.ps.Z Figure 9a in compressed PostScript form

230 ps fig.9b.ps.Z Figure 9b in compressed PostScript form

Table 17. PostScript Files Comprising This Manual (Files 209 - 230)

THE END

